Sophomore Advising
Civil & Environmental Engineering
Winter 2015 for 2014-2015 AY
Professor M. G. McNally
Professor Diego Rosso
Sophomore Advising Process

• Faculty advising *complements* other forms of advising:
 – HSSOE Counselors, Peer Advising, Professional mentors

• Annual Process: *every year!*

• Format: Each entering class will keep the same group of *faculty advisors* throughout the degree program

• Mandatory Process:
 – Group Advising: sessions for Freshmen in the Fall and separate sessions for Sophomores and for Juniors in the Winter
 – Individual Advising: select a faculty member by name, teaching and research area, or session format (sign-up on-line)

• Sophomores are *recommended* to see a faculty advisor often, but *must* see an advisor following Group Advising.

• Penalty: Registration Hold (not a good thing!)
Group Advising

• Q1. Are you currently a CEE Sophomore?
 You are taking typical sophomore classes, including second year math courses as well as courses such as CEE30, 81A-B, 11, and 20/21. Sophomores will take junior CEE core courses next year.

• Q2. Is your current Program of Study valid?
 If not, you must meet with an HSSoE undergraduate counselor to update this form to ensure your meeting program requirements.

• Q3. Are you scheduled for individual advising?
 After this session, you will receive an email with instructions on how to register for an individual faculty advising session.

• Sign the attendance roster before you leave!

CEE@UCI
• All *sophomores* must schedule an appointment with a sophomore faculty advisor this quarter. You will *receive an email* with a web link to select an advisor. Your advisor will then email you with available advising slots scheduled over the next few weeks.

FAQs: http://www.its.uci.edu/~mmcnally/FAQ-advising.html

• *Sophomore individual advising* will be either *individual* or *small group* sessions:
 – After selecting an advisor, you will be able to *schedule* an appointment in winter quarter.
 – You must fulfill the individual requirement or a *hold* will be placed on next quarter’s registration.
Advising FAQs

FAQs: CEE Faculty Advising Process [2013-2014]

- Why Do We Have Faculty Advising for Undergraduates?

 The simple answer is that annual faculty advising of undergraduate students is required for engineering degree program accreditation; a degree from an accredited engineering program is required to qualify for professional registration; and professional registration is required for engineering practice. The advising process, however, exists for many practical reasons. Our program requirements change often thus regular meetings with students are the best way to provide the information on current programs and planned changes. In this regard, faculty advising complements but does not replace annual meetings with Samueli School of Engineering undergraduate counselors to develop a Plan of Study. The faculty advising process also provides an opportunity for students to discuss a broad range of issues with program faculty, whether involving degree issues, specialization choices, career opportunities, or even professional practice. It provides a good deal of potential opportunity at a very low cost.

- What Is the CEE Faculty Advising Process?

 Many academic programs assign freshmen to advisors, faculty who will remain in that capacity as the student proceeds through the program. This fixed reference point is a benefit to many students who have questions throughout the year. We have chosen to assign freshmen to a group of faculty advisors, providing a fixed group of advisors for the same group of students over the entire time that they are in the degree program. Each advising cohort has a faculty member from each research area (structures, transportation, and water/environmental). Your faculty advisors will continue to advise you as long as you are in our UG programs.
Advisers: Sophomores 2014 (Class of 2017)

Dr. Jayakrishnan
AIRB 4055
Transportation
CEE 81A
rjayakri@uci.edu

Dr. Lemnitzer
EG 4149
Geotechnical
CEE130, CEE156
lemnitzer@uci.edu

Dr. Hsu
EH 5320
Hydrologic Modeling
CEE30
kuolinh@uci.edu

Dr. Cooper
ET 305
Environmental
CEE 162
wcooper@uci.edu

Dr. Vrugt
ET 844E
Systems Modeling
CEE 20
jasper@uci.edu
Hydrology & Water Resources Faculty

Dr. Detwiler, ET 844C
Groundwater Hydrology
CEE 171, CEE 172

Dr. Sanders, ET 844D
Computational Hydrodynamics
CEE 170

Dr. Sorooshian, EH 5308
Hydrologic Systems
CEE 176

Dr. Vrugt, ET 844E
Systems Modeling
CEE 20, CEE21

Dr. Aghakouchak
ET 506A
Remote Sensing
CEE81b, CEE173

Dr. Hsu, EH 5320
Hydrologic Modeling
CEE30

CEE@UCI
Water (cont’d.)

Environmental Faculty

Dr. Davis, ET 544E
Coastal Engineering
CEE 178

Dr. Cooper, ET 305
Environmental Chemistry
CEE 162

Dr. Jiang, ET 716E
Water Quality
CEE 160, CEE 169

Dr. Grant, ET 944D
Environmental Engr
CEE178

Dr. Rosso, ET 844F
Environmental Processes
CEE163, CEE165
EnE UG Advisor

Dr. Olson, ET 844
Environmental Microbiology
CEE 60

CEE@UCI
Sophomore Issues

• **What’s New?**
 – Engineering Science Elective & Engineering Design Elective
 – CEE60 versus SocEcol E8

• **Grades and pre-requisites … letter grades!**

• **Choices:**
 – Degree programs, Specializations, Minors, Gen. Ed.
 – Student Clubs & Professional Associations

• **E-Week:** February 2015 – Get Involved

• ASCE Student Conference
1. **Stakeholders**: students, faculty, alumni, and employers

2. **Program Educational Objectives**: accomplishments of graduates expected by a few years after graduation

3. **Student Learning Outcomes**: knowledge and skills to be attained by the time of graduation

4. **Course Outcomes** (or Performance Criteria) are restatements of Program Outcomes that define specific knowledge and skills to be attained in a specific course

5. **Degree Requirements** comprise core, specialization, labs, General Ed, and a capstone design experience
CE Program Educational Objectives:

Describe the expected accomplishments of graduates during the first few years following graduation. Our graduates are expected to:

1. Establish a Civil Engineering career in industry, government, or academia and achieve professional licensure as appropriate.
2. Demonstrate excellence and innovation in engineering problem solving and design in a global and societal context.
3. Commit to lifelong learning and professional development to stay current in technology and contemporary issues.
4. Take on increasing levels of responsibility and leadership in technical and/or managerial roles.

Note: EnE PEOs are virtually identical
CE and EnE Student Learning Outcomes:
Describe what students are expected to know or be able to do by graduation (a-k)

a. An ability to apply knowledge of mathematics, science, and engineering.

b. An ability to design and conduct experiments, as well as to analyze and interpret data

c. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

d. An ability to function on multidisciplinary teams

e. An ability to identify, formulate, and solve engineering problems

SLOs
CE and EnE Student Learning Outcomes (continued)

f. An understanding of professional and ethical responsibility

g. An ability to communicate effectively

h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

i. A recognition of the need for, and an ability to engage in life-long learning

j. A knowledge of contemporary issues

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
ENGRCEE 30 STATICS
(Required for AE, CE, EnE, ME and MSE.)

Catalog Data: ENGRCEE 30 Statics (Credit Units: 4) Addition and resolution of forces, distributed forces, equivalent systems of forces centroids, first moments, moments and products on inertia, equilibrium of rigid bodies, trusses, beams, cables. Corequisite: Mathematics 2D. Prerequisite: Physics 7C. Same as ENGR 30 and ENGRMAE 30. (Design units: 0)

Coordinator: Lizhi Sun

Relationship to Student Outcomes
This course relates to Student Outcomes: EAC a, EAC e.

Course Learning Outcomes. Students will:
1. Analyze and draw free body diagrams for single particles and rigid body systems. (EAC a)
2. Establish equilibrium equations of particles/rigid bodies for solve for forces and support reactions. (EAC a)
3. Calculate centroids of areas and moments of inertia. (EAC a)
4. Apply the theory and methods to analyze simple trusses. (EAC e)
5. Compute internal forces in cables/beams. (EAC e)
6. Formulate statics problems for simple structural beams. (EAC e)

http://plaza.eng.uci.edu/course/outline/engrcee/
Mathematics and Basic Science (48 units)
• Math2A-B-D-E, 3A-D
• Phys7C-D and 7LC-D, Chem 1A-B, Chem 1LE
• Science Elective (one BioSci or ESS course from list)

General Education Requirements (44+ units)
• Provides flexibility, overlaps encouraged, etc.
• Engineering Professional Topics Courses include Economics 20A-B and CEE60 (or SocEcol E8)
• E190W Upper Division Writing
Engineering Topics Courses (77 units):

- LD Core: CEE 11, 20, 21, 30, 81A-B
- UD Core: CEE 110, 111, 121, 130, 130L, 150, 150L, 151A, 151C, 160, 170, and 171
- Engr Sci Elective (Engr7A-B, EECS70A, Engr54, MAE80, MAE91)
- Engr Design Elective (one of 155, 172, 122 or 123)
 (No double counting!)
- Senior Design Practicum: CEE 181A-B-C

Specialization or Concentration (16+ units)

- Must complete senior design project in same area

Summary

- A nominal total of 187 units (22+ design units)
BSCE: Freshman 2013-2014

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2A</td>
<td>4</td>
<td>Math 2B</td>
<td>4</td>
</tr>
<tr>
<td>CEE 20</td>
<td>4</td>
<td>Phys 7C, L</td>
<td>5</td>
</tr>
<tr>
<td>Chem 1A</td>
<td>4</td>
<td>Chem 1B</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Chem 1LE</td>
<td>3</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

- Effective Fall 2013, Science Elective is BioSci or ESS
- Effective Fall 2013, EECS10 & CEE20 => CEE20 & CEE21
- Engr 7A-B option in F/W for freshmen only
BSCE: Sophomore 2014-2015

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 3A</td>
<td>4</td>
<td>Math 3D</td>
<td>4</td>
</tr>
<tr>
<td>Math 3D</td>
<td></td>
<td>4</td>
<td>Math 2E</td>
</tr>
<tr>
<td>CEE 30</td>
<td>4</td>
<td>Engr Sci</td>
<td>4</td>
</tr>
<tr>
<td>CEE 11</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CEE81A</td>
<td>3</td>
<td>CEE81B</td>
<td>3</td>
</tr>
<tr>
<td>CEE 21</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: Econ 20A-B, CEE60
- **Engr Science** Elective: EECS70A, ENGR54, MAE80, MAE91
- CEE81A is a pre-requisite for CEE81B
BSCE: Junior 2015-2016

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 150, L</td>
<td>5 CEE 151A</td>
<td>4 CEE 151C</td>
</tr>
<tr>
<td>CEE 170</td>
<td>4 CEE 171</td>
<td>4 CEE 110</td>
</tr>
<tr>
<td>CEE 121</td>
<td>4 CEE 130, L</td>
<td>5 CEE 160</td>
</tr>
<tr>
<td>E190W</td>
<td>4 Gen. Ed.</td>
<td>4 Gen. Ed.</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

- Civil Engineering “core”; *pre-requisites are important!*

2014
BSCE: Senior 2016-201

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 181A</td>
<td>2</td>
<td>CEE 181B</td>
<td>2</td>
</tr>
<tr>
<td>CEE 181C</td>
<td>2</td>
<td>Spec. Elec.</td>
<td>4</td>
</tr>
<tr>
<td>Spec. Elec.</td>
<td>4</td>
<td>Spec. Elec.</td>
<td>4</td>
</tr>
<tr>
<td>Spec. Elec.</td>
<td>4</td>
<td>Spec. Elec.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

- **Engr Design** Elective (122, 123, 155, or 172) – quarter varies!
- Can not double count the EDE!
- **Specialization Elective:** flexibility with 4**th** course!
Specializations 1

General Civil Engineering:
Requires four (three) courses from CEE122 or CEE123;
CEE152, CEE153, CEE155, or CEE156;
CEE162, CEE163, CEE165, or CEE169;
CEE172, CEE173, CEE176, or CEE178;
or CEE55 or courses from an approved list.

Environmental Hydrology & Water Resources:
Requires four (three) courses from CEE162, 163, 165, 169,
CEE172, 173, 176, or 178, or courses from an approved list.
Specializations 2

Structural Engineering:
Requires CEE153 and three (two) courses from CEE149, CEE152, CEE155, CEE156, MAE157, or courses from an approved list [requires CEE155 as the Engr Design Elective]

Transportation Systems Engineering:
Requires CEE122 and CEE123, and two (one) courses from CEE124, CEE125, E189, EECS70A, MAE140, MAE170, MAE171, or courses from an approved list.

Note: the 4th course is any UD HSSOE technical elective

2014
Key Pre-requisites

BSCE Prerequisite Chains for CEE181ABC

Note:
- Math and science pre-reqs are not shown.
- For 2 through 7, specific pre-reqs are not shown.
- For 1, there are no CEE pre-reqs.
Program Educational Objectives:

Describe the expected accomplishments of graduates during the first few years following graduation. Our graduates are expected to:

1. Establish an Environmental Engineering career in industry, government, or academia and achieve professional licensure as appropriate.

2. Demonstrate excellence and innovation in engineering problem solving and design in a global and societal context.

3. Commit to lifelong learning and professional development to stay current in technology and contemporary issues.

4. Take on increasing levels of responsibility and leadership in technical and/or managerial roles.
EnE Course Requirements 1

Mathematics and Basic Science (64 units)
- Math 2A-B-D-E, 3A-D
- Phys 7C-D, 7LC-D
- Chem 1A-B-C, 1LC-D, 51A
- 4 units of Earth System Science and 4 units of Biological Sciences *(must choose from approved list)*

General Education Requirements (44+ units)
- Engineering Professional Topics Courses include:
- Economics 20A-B and CEE60 *(or Soc Ecol E8)*
- E190W for Upper Division Writing
Engineering Topics Courses (81+ units):
- LD Core: CEE 11, 20, 21, 30, 81A, 81B, MAE91
- UD Core: CEE 110, 130, 130L, 150, 150L, 160, 162, 170
- Engr Sci Elective (Engr7A-B, EECS70A, Engr54, MAE80)
- Senior Design Practicum: CEE 181A-B-C
- Engineering Electives (2 from 2 areas/1 from other):
 - Water Supply and Resources (CEE171, 172, 173, 176, 178, ESS132)
 - Environmental Processes (CEE163, 165, 167)
 - Atmos Systems & Air Poll Control (MAE110, 115, 164, ESS 112)
- A nominal total of 189 units
- Must verify Program of Study and unit counts with UG Office
<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2A</td>
<td>4</td>
<td>Math 2B</td>
<td>4</td>
</tr>
<tr>
<td>CEE 20</td>
<td>4</td>
<td>Phys 7C, L</td>
<td>5</td>
</tr>
<tr>
<td>Chem 1A</td>
<td>4</td>
<td>Chem 1B</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed. *</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>19</td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: WR39B-C or CEE60
- EECS10 and CEE20 replaced by CEE20 & CEE21 in Fall ‘13
- Engr 7A-B option in F/W for freshmen only
BS EnE: Sophomore 2014-2015

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 3A</td>
<td>4</td>
<td>Math 3D</td>
</tr>
<tr>
<td>CEE 81A</td>
<td>3</td>
<td>CEE 81B</td>
</tr>
<tr>
<td>CEE 30</td>
<td>4</td>
<td>Engr Sci</td>
</tr>
<tr>
<td>Chem 51A,</td>
<td>4</td>
<td>Gen. Ed.</td>
</tr>
<tr>
<td>Chem 1LD</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: CEE60
- **Engr Science** Elective: EECS70A, ENGR54, MAE80, etc.

2014
BS EnE: Junior 2015-2016

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 150, L</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>CEE 170</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sci. Elect. 1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>E190W</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>CEE 130, L</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>CEE 162</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Eng. Elect.</td>
<td>4</td>
<td>Sci. Elect. 2</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

- Consider pre-requisites!
- Science Electives: 1 each in Bio Sci and Earth Systems Sci
BS EnE: Senior 2016-2017

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 181A</td>
<td>2</td>
<td>CEE 181B</td>
<td>2</td>
<td>CEE 181C</td>
</tr>
<tr>
<td>Eng. Elect.</td>
<td>4</td>
<td>Eng. Elect.</td>
<td>4</td>
<td>Eng. Elect.</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

- Spread Gen Ed (include Econ 20A-B, UD Writing)
- Consider pre-requisites for Science and Engineering Electives
General Education Requirements

1. General Education requirements:
 - Writing (3 courses: 2 LD and 1 UD)
 - Arts and Humanities (3 courses)
 - Social and Behavioral Sciences (3 courses)
 - Multicultural Studies / International Issues (1)

2. BSCE and BSEnE already cover:
 - Science and Technology
 - Quantitative, Symbolic, Computational Reasoning

3. Need to consult with HSSoE counselors

2014
Fall 2011 Course Learning Outcome Surveys Now Open
Engineering course learning outcomes surveys are once again available. Students are asked to complete a brief survey for each enrolled undergraduate Engineering course. These are similar to teaching evaluations but rather than focus on the quality of instruction, they focus on whether students have met the outcomes determined for each course. Course learning outcome surveys will remain open until January 8, 2012.

Winter 2011 Course Learning Outcome Surveys Now Available
Engineering course learning outcomes surveys are once again available. Students are asked to complete a brief survey for each enrolled undergraduate Engineering course. These are similar to teaching evaluations but rather than focus on the quality of instruction, they focus on whether students have met the outcomes determined for each course. Course learning outcome surveys will remain open until March 20, 2011.

Fall 2010 Course Learning Outcome Surveys Now Available
Engineering course learning outcomes surveys are once again available. Students are asked to complete a brief survey for each enrolled undergraduate Engineering course. These are similar to teaching evaluations but rather than focus on the quality of instruction, they focus on whether students have met the outcomes determined for each course.

Fall 2010 course learning outcomes surveys are now closed. Thank you for participating.

http://plaza.eng.uci.edu
CEE UG Programs

[Website Link]

[Image of Website]

http://www.eng.uci.edu/dept/cee/
Civil and Environmental Engineering offers annual scholarship opportunities for qualified undergraduate students:

• **Emeriti Scholarships**, supported by the UCI CEE Affiliates:
 – **Jan Scherfig Scholarship**: for *freshmen* returning in the fall
 – **Gary Guymon Scholarship**: for *sophomores* returning in the fall
 – **Robin Shepherd Scholarship**: for *juniors* returning in the fall

• **Huit Zollars Civil Engineering Scholarship**:

• **Applications** for the $1,000 scholarships are submitted online in Winter Quarter (check your UCI email!)

• **Other HSSOE and UCI Scholarships:**

 http://www.ofas.uci.edu/content/Scholarships.aspx
Academic Honesty

• Civil and Environmental Engineering is perhaps at the pinnacle of the practice of, and the need for, ethical behavior.

• At you progress through the program, any form of cheating has reduced benefit (on grades) and increased cost (of not finishing your degree).

• The UCI Policy on Academic Honesty is defined at:

 http://www.senate.uci.edu/senateweb/default2.asp?active_page_id=754

• Take note of the descriptions of cheating, dishonest conduct, plagiarism, and collusion.

• Ask your instructors to discuss course policies on Academic Honesty, including policies on joint work on HW, labs, or other required tasks.

• Full details are posted on-line at: http://honesty.uci.edu/

CEE@UCI
1. **Profession Registration**: licensure as a professional engineer is required to practice as a civil or environmental engineer.

2. **Steps Toward Licensure: First…**
 a. Complete a BS from an accredited institution (UCI!)
 b. Successfully complete the *Fundamentals of Engineering* (FE) exam (material covered includes physics, chemistry, thermo, circuits, mathematics, statics & dynamics, engineering economics, fluids, engineering ethics, strength of materials, computers, etc.)

3. **Steps Toward Licensure: Then…**
 a. After 2 years of work under professional engineers …
 b. … soon 30 units of post-graduate continuing education
 c. Successfully pass the *Principles and Practice of Engineering* (PE)
 d. http://www.ncees.org/exams/professional/
Why study Civil Engineering abroad?

"As a Civil Engineering student studying abroad, you will gain exposure to different modes of problem solving, leading toward different approaches to the design and implementation of civil engineering projects. In light of the increasing globalization of engineering practice, this acquired knowledge will likely be beneficial in your future engineering career. You will see the significance of US building codes and how these are implemented in other countries, as well as how the US adopts sections of engineering building codes from other countries. EAP programs often have more academic support staff to assist engineering professors with computing, wet/dry, and field labs, which leads toward more meaningful laboratory experiences. Not only will EAP be one of the most memorable times in your life, the international experience will open a world of engineering opportunities in your future."

Professor Michael McNally
Department of Civil & Environmental Engineering

http://www.cie.uci.edu/
Student Clubs

UCI Student Chapter of the Institute of Transportation Engineers

What is ITE?
ITE is the Institute of Transportation Engineers, an international educational and scientific association. Its mission is to foster the highest professional and ethical standards in the field of transportation engineering for the benefit of the traveling public, the environment, and the economy.

Why join ITE?
Membership in the student chapter is an excellent way to become familiar with the transportation field. There are many social benefits as well as professional and academic benefits such as:
- Free student membership for the first year
- Access to the ITE annual Student Transportation Conference
- A place to network as a student at the Transportation Conference
- A subscription to the ITE student newsletter
- Opportunities to attend transportation-related events
- A network of professionals in the field
- Opportunities to attend transportation-related seminars
- A platform to share knowledge and ideas

Awards and Funding: The ITE Student Chapter awards several research and design projects in transportation engineering, providing opportunities for students to explore their interests.

Joining ITE: To join, you must complete the ITE membership application and submit it to the ITE office.

Contact Information:
For more information, visit the ITE website at www.ite.org or contact the ITE chapter advisor, Professor McArthur at mcarter@uci.edu.

American Academy of Environmental Engineers at UCI

Professional engineering chapter at UCI for engineers interested in the environment:
- Learn outside of the classroom with your peers
- Discover the diversity of environmental topics
- Network with industry after graduation

Meetings: Wednesdays of Even Weeks, 5:00-7:00, ICF 103
Email: aaece.uci@gmail.com
Facebook: American Academy of Environmental Engineers at UCI

Welcome to Chi Epsilon at UCI

http://clubs.uci.edu/chiepsilon/

American Society of Civil Engineers
UCI Student Chapter

Upcoming Meetings:
- General Meeting: November 14th, 2011, 7-9PM, 114 MCB

Board Meeting:
- Check your e-mail for details

Club Information:
- aaece.uci@gmail.com

http://clubs.uci.edu/asce/
Summary

1. Academic Honesty…
2. Faculty Advising, HSSOE Counselors
3. ABET evaluations versus UCI course evaluations
4. Petitions: substitutions, variations, and related issues
5. Student Clubs? [G-E-T I-N-V-O-L-V-E-D]
6. Research Opportunities, Internships, Jobs
7. Careers: Graduate School? (GRE)
8. Careers: Professional Practice (FE, PE)
Contact Information

HSSOE UG Affairs Office:
1. UG Counselors in REC 305 (824-4334)

Civil & Environmental Engineering:
1. Department Office in EG 4130 (824-5333)
2. CEE web site: http://www.eng.uci.edu/dept/cee/
3. CE Advisor: Professor McNally <mmcnally@uci.edu>
4. EnE Advisor: Professor Rosso bidui@uci.edu

UCI General Catalogue: Your contract with UC
http://www.editor.uci.edu/catalogue/engr/engr.6.htm
AAEES at UC Irvine

• Upcoming General Meeting
 – 7-8pm Monday, Week 4
• Opportunity to network with fellow EnEs
• On & off-campus events
• Currently planning a conference for Spring ‘15