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ABSTRACT

In this paper, we propose a multi-commodity, discrete kinematic wave model

for simulating network traffic flow that possesses the theoretical rigor and com-

putational efficiency inherent in the kinematic wave theory. In this model,
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fluxes through boundaries and junctions are computed systematically under the

supply-demand framework. In addition, traffic is also modelled by commodity

type such that the effects of the geometrical characteristics of a road network on

traffic dynamics can be captured. Although traffic is not ordered down to the ve-

hicle level as in existing kinematic wave simulation models, the non-compliance

to First-In-First-Out in this model is still in the order of ∆t, the time increment.

Hence travel times in the average sense can be defined from cumulative curves.

Finally, the evolution of traffic dynamics in a sample road network is shown to

demonstrate the stability, numerical convergence and soundness of the proposed

network kinematic wave model.

1 Introduction

Recurrent or non-recurrent traffic congestion in many major metropolitan ar-

eas have seriously deteriorated the mobility of people and goods. To tackle the

congestion problem, traffic engineers and scientists are facing a number of chal-

lenges. These include the evaluation of transportation network performance,

prevention and efficient management of incidents, development of effective traf-

fic control strategies, and the estimation of traffic demand, to mention a few.

As we know, a fundamental issue in addressing all these challenges is the un-

derstanding of traffic dynamics on a road network, i.e., the evolution of traffic

on a road network under initial and boundary conditions, for which traffic flow

models of road networks play an important role.

Among many traffic flow models, the kinematic wave models offer many ad-

vantages in studying traffic dynamics in large-scale road networks. Practically,

people are more interested in aggregate-level traffic conditions such as average

travel speeds, densities, flow-rates, and travel times, which are directly con-

cerned or can be easily derived in the kinematic wave models. Theoretically, the

evolution of traffic conditions on a link can be studied as hyperbolic conserva-
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tion laws, which provides rigor to the analysis. Computationally, the kinematic

wave models can be solved efficiently with the Godunov method (1, 2), which

offers computational efficiency in large-scale applications.

There are several approaches in modelling network traffic flow under the

framework of kinematic wave theory. First, Vaughan et al. (3) studied network

traffic flow with two continuous equations: a “local equation”, which ensures

traffic conservation and is consistent with the traditional LWR model on a link

at the aggregate level, and a “history equation”, which computes the trajectory

of each vehicle at the disaggregate level. Since the trajectories of all vehicles

are not always required for many applications, this model consumes significant

amount of computational resources than necessary. Second, Jayakrishnan (4)

introduced a discrete network flow model, in which each link is partitioned into

a number of cells, vehicles adjacent to each other and with the same O/D and

path are called a “macroparticle”, and the position of a macroparticle at each

time step is determined by its travel speed and the cell’s length. However, with

the given mechanism, this model may not be consistent with the LWR model

since traffic conservation can be violated. Third, Daganzo (1) introduced a

network flow model based on his Cell Transmission Model (CTM) (5), a nu-

merical approximation of the LWR model with a special fundamental diagram

— a triangle. In this discrete model, macroparticles in the sense of Jayakr-

ishnan (4) in a cell are ordered according to their waiting times and moved

to the downstream cell when their waiting times are greater than a threshold

minimum waiting time, which is computed from traffic flow at the aggregate

level. However, the determination of the threshold minimum waiting time is

quite tedious. Fourth, in the KWave98 simulation package (6), which is based

on the simplified kinematic wave theory by Newell (7), vehicles on a link are

considered to be ordered as a queue. Then, with the in-queue and out-queue of

the link determined, one can easily update the link queue. However, in-queues

and out-queues at typical highway junctions such as merges and diverges create
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difficulties for this model.

In many applications, such as dynamic traffic assignment (DTA), the First-

In-First-Out (FIFO) property is a key concern. Consequently, all the aforemen-

tioned models order vehicles albeit in different fashions. Vehicles are ordered

according to their trajectories in (3), locations in (4), waiting times in (1), and

positions in a link queue in (6). That is, these simulation models track either ve-

hicles’ trajectories, or positions, or waiting times, or queuing orders. 3 In these

models, therefore, traffic conditions are also considered at the vehicle level. As

a result, the computational efficiency of the kinematic wave models is not fully

utilized.

In contrast, (8, 9) proposed the so-called STRADA model. In this model, the

Godunov-type approximation is applied, traffic flows through network junctions

as well as link boundaries are computed in the framework of supply-demand

method (2), and traffic is disaggregated into partial traffic according to desti-

nations, origin-destination pairs, paths, etc. Further, dynamics of partial flows

are computed based on the theory in (2). Since this model does not consider

individual vehicles, computational cost does not increase with the number of

vehicles as in the aforementioned models. Thus it is more efficient in simulating

large networks. However, since vehicles are not ordered explicitly in this model,

the FIFO rule is not exactly followed even on a link or path.

In the same spirit as in (8, 9), we propose in this paper a new discrete

network traffic flow model for a simple traffic system, where vehicles are catego-

rized into multiple commodities according to their paths and no differentiations

are made in vehicle types, driver classes, or lane types (such as HOV lanes).

We hereafter refer to this model as multi-commodity, discrete kinematic wave

(MCDKW) model. In the MCDKW model, besides link characteristics such

as free flow speed, capacity, and number of lanes, traffic dynamics are highly
3In (4), although the introduction of macroparticles save a certain amount of memory in

computation, this saving is diminished when vehicles of different classes are evenly mixed.
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related to geometrical characteristics of a road network including link inhomo-

geneities, merges, diverges, and other junctions. Although it does not give a

complete, detailed picture of traffic dynamics as a microscopic traffic simulation

model does, this model is still of importance for many applications, in which

the difference in vehicles, drivers, or lanes are negligible or can be averaged out

without major loss of accuracy.

Like in the STRADA model, the complexity of computation in the MCDKW

model is not related to the number of vehicles. However, although having the

same framework as the STRADA model, the MCDKW model is different from

the former in the following aspects. First, in the MCDKW model, we specify

commodity flows as path flows. Therefore, FIFO is satisfied for each commodity

as long as it is satisfied for each link. Further, user equilibrium is not needed

in order to define experienced commodity travel times. While in the STRADA

model, instantaneous travel time is used. In this sense, although the MCDKW

is not so flexible as the STRADA model, it can be used as a rigorous analy-

sis tool for network traffic dynamics without considering user equilibrium and

for traffic assignment methods based on experienced travel time. Second, the

MCDKW model, we incorporated our latest efforts in improving kinematic wave

models for highway junctions. In the STRADA model, intersection zones are

defined to incorporate junction models. In stead, we applied a simpler merge

model and a simpler diverge model, which in turn lead to a simpler model for

general junctions. As a result, complex junctions can be treated as simple junc-

tions without decomposing them into simpler ones, and separate treatment on

intersections is not needed. Further, in these models, we do not need any pa-

rameters other than those contained in the fundamental diagram. Because of

the differences, the MCDKW model is computationally more efficient and can

be calibrated more easily. Third, based on commodity travel times, we can show

that the MCDKW model is convergent by numerical simulations. This directly

addresses the FIFO concerns in such macroscopic models.
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In the rest of this paper, we will discuss theories underlying the MCDKW

model in Section 2. In Section 3, we will discuss the process of output from

the MCDKW model to obtain interested data of a road network, such as travel

times. In Section 4, we carry out some numerical simulations of a simple road

network. In Section 5, we will draw some conclusions and provide further dis-

cussions about the calibration of the MCDKW model.

2 Underlying theories of the MCDKW model

In the multi-commodity discrete kinematic wave (MCDKW) network traffic flow

model, dynamics of total traffic, i.e., the evolution of traffic conditions of all

commodities, are studied at the aggregate level and governed by the kinematic

wave theories. These theories provide the building blocks for the MCDKW

model. At the disaggregate level, traffic of each commodity in the form of

proportions is studied with its proportion, and First-In-First-Out property on

a link will be discussed.

2.1 Kinematic wave theories at the aggregate level

In the MCDKW model, we use the discrete form of the kinematic wave theories,

which can be obtained through the first-order4 Godunov method (11) of the

continuous versions. In the discrete form, each link is partitioned into N cells,

of equal length or not, and the time interval is discretized into K time steps.

Then, we obtain the Godunov-type finite difference equation for total flow in

cell i from time step j to time step j + 1 as follows:

ρj+1
i − ρj

i

∆t
+

f j∗
i−1/2 − f j∗

i+1/2

∆x
= 0, (1)

where ∆x is the length of cell i, ∆t is the time from time step j to time step

j +1, and the choice of ∆t
∆x is governed by the CFL (12) condition. In Equation

4A second-order method was discussed in (10).
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1, ρj
i is the average of traffic density ρ in cell i at time step j, similarly ρj+1

i

is the average of ρ at time step j + 1; f j∗
i−1/2 is the flux through the upstream

boundary of cell i from time step j to time step j +1, and similarly f j∗
i+1/2 is the

downstream boundary flux. Fluxes through link boundaries, merges, diverges,

or general junctions are discussed later in details. Given traffic conditions at

time step j, we can calculate the traffic density in cell i at time step j + 1 as

ρj+1
i = ρj

i +
∆t

∆x
(f j∗

i−1/2 − f j∗
i+1/2). (2)

Defining Nj
i = ρj

i∆x as the number of vehicles in cell i at time step j, Nj+1
i =

ρj+1
i ∆x as the number of vehicles at time step j + 1, F j

i−1/2 = f(ρj∗
i−1/2)∆t as

the number of vehicles flowing into cell i from time step j to j + 1, and F j
i+1/2

as the number of vehicles flowing out of cell i, Equation 2 can be written as:

Nj+1
i = Nj

i + F j
i−1/2 − F j

i+1/2, (3)

which is in the form of traffic conservation.

Given the initial and boundary conditions, we will use the supply-demand

method (1, 2) for computing fluxes through cell boundaries: F j
i−1/2 or f j∗

i−1/2. In

a general road network, there are the following types of boundaries: boundaries

inside a link, merges, diverges, and more complicated intersections.

1. When the boundary at xi−1/2 is a boundary inside a link, whose upstream

cell is denoted as u and downstream cell d, we follow the supply-demand

method discussed in (1, 2, 13). I.e., if we define the upstream demand as

Du =

 Q(Uu), when Uu is under-critical (UC)

Qmax
u , when Uu is over-critical (OC)

(4)

and define the downstream supply as

Sd =

 Qmax
d , when Ud is under-critical

Q(Ud), when Ud is over-critical
(5)
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then the boundary flux can be simply computed as

f j∗
i−1/2 = min{Du, Sd}, (6)

where Ud and Uu are traffic conditions including density ρ and road in-

homogeneity a at jth time step, of the downstream and upstream cells,

respectively. As discussed in (13), this method is consistent with analytical

solutions of the Riemann problem for inhomogeneous roadway.

2. When xi−1/2 is a merging junction with P upstream merging cells, which

are denoted as up (p = 1, · · · , P ), and a downstream cell d. The demand

of upstream cell up, Dp, is defined in Equation 4, and the supply of the

downstream cell, Sd, is defined in Equation 5. Then, we apply the simplest

distribution scheme (14) and compute the boundary fluxes as

f j∗
i−1/2,d = min{

∑P
p=1 Dp, Sd},

f j∗
i−1/2,up

= f j∗
i−1/2,d

Dp∑P

p=1
Dp

, p = 1, · · · , P,
(7)

where f j∗
i−1/2,d is the in-flow of the downstream cell, and f j∗

i−1/2,up
is the

out-flow of upstream cell up.

In addition, if an upstream cell, e.g. up, is signalized and denote r as the

proportion of green light in a cycle (i.e. green ratio), then we can apply the

controlled traffic demand of up, min{rQmax
p , Dp}, in the supply-demand

method above (1, 14). Note that r can be a continuous function when

considering the average effect or a piece-wise constant function when the

simulation interval ∆t is smaller than a signal cycle.

3. When xi−1/2 is a diverging junction with P downstream cells, which are

denoted as dp (p = 1, · · · , P ), and an upstream cell u. In the model

proposed in (15), we introduced a new definition of partial traffic demand

of vehicles travelling to dp in cell u as follows,

Dp =

 Q(ρp; ρ̂p) ≡ ρp V (ρp + ρ̂p) ρp is UC

Qmax(ρ̂p) otherwise
, (8)
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where ρ̂p is equal to the density of vehicles not travelling to dp, and at

critical density Q(ρ; ρ̂p) reaches its maximum. The traffic supply for dp,

Sp, is defined by Equation 5. Then, the boundary flux to dp, f j∗
i−1/2,dp

,

can be computed by

f j∗
i−1/2,dp

= min{Sp, Dp}, (9)

and the out-flow of u, f j∗
i−1/2,u, is the sum of these flows,

f j∗
i−1/2,u =

P∑
p=1

f j∗
i−1/2,dp

. (10)

Another model of traffic diverging to D downstream links we will imple-

ment in the MCDKW model was proposed in (1, 2):

f j∗
i−1/2,u = minD

d=1{Du, Sd/ξd},

f j∗
i−1/2,d = ξdf

j∗
i−1/2,u, d = 1, · · · , D,

(11)

where ξd is the proportion of commodity d in total traffic, and here Du is

the demand of the upstream cell as defined in Equation 4.

When vehicles have no predefined route and can choose any downstream

link at a diverge, we use the model proposed in (14):

f j∗
i−1/2,u = min{Du,

∑D
d=1 Sd},

f j∗
i−1/2,d = Sd∑D

d=1
Sd

f j∗
i−1/2,u, d = 1, · · · , D.

(12)

4. For intersections with two or more upstream and downstream links, we

can combine the merge and diverge models together. Note that only the

computation of demands and supplies may change, and the supply-demand

method is still the same.

For example, when we combine the supply-demand methods in Equation

7 and Equation 11 for an intersection with U upstream branches and D
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downstream branches, we can compute fluxes by

f j∗
i−1/2 = minD

d=1{
∑U

u=1 Du, Sd

/(∑U

u=1
Duξu,d∑U

u=1
Du

)
},

f j∗
i−1/2,d =

∑U

u=1
Duξu,d∑U

u=1
Du

f j∗
i−1/2, d = 1, · · · , D,

f j∗
i−1/2,u = Du∑U

u=1
Du

f j∗
i−1/2, u = 1, · · · , U,

(13)

where ξu,d is the proportion of traffic heading downstream link d in up-

stream link u, f j∗
i−1/2 is the total flux through the boundary, f j∗

i−1/2,d flux

heading downstream link d, and f j∗
i−1/2,u flux from upstream link u. In this

model, the intersection is considered as a combination of a merge with U

upstream branches and a diverge with D downstream links in the fashion

of (1). Note that the merge model, Equation 7, and the diverge model,

Equation 11, are specific cases of Equation 13.

2.2 Commodity-based kinematic wave theories

In the MCDKW model, commodities are differentiated by their origin-destination

pairs or paths. We assume that a road network has P ′ origin-destination (OD)

pairs and P paths (P ≥ P ′). When vehicles have predefined paths, we then

have a P -commodity traffic flow on the road network and label vehicles taking

pth path as p-commodity. When vehicles of an O/D have no predefined paths,

we have P ′-commodity traffic flow.

In the kinematic wave theories of multi-commodity traffic, we denote total

traffic density, travel speed, and flow-rate respectively by ρ, v, and q, which

are all functions of location x and time t. In contrast, these quantities for p-

commodity vehicles are ρp, vp, and qp respectively. The fundamental diagram of

total traffic defines a functional relationship between density and travel speed or

flow-rate: q = Q(a, ρ) and v = V (a, ρ) ≡ Q(a, ρ)/ρ, where a(x) stands for road

inhomogeneities at location x such as changes in the number of lanes, curvature,

and free flow speed. Further, we assume traffic on all links is additive in the

10



following sense (15):

ρ =
P∑

p=1

ρp, (14)

v = vp = V (a, ρ), p = 1, · · · , P, (15)

q =
P∑

p=1

qp, (16)

The kinematic wave theory of additive multi-commodity traffic on a link can

be described by the following theory (13),

ρt + Q(a, ρ)x = 0,

(ρp)t + (ρpV (a, ρ))x = 0, p = 1, · · · , P.
(17)

If denoting the local proportion of p-commodity (p = 1, · · · , P ) by ξp = ρp/ρ,

we then have the following advection equations (2)

(ξp)t + V (a, ρ)(ξp)x = 0, p = 1, · · · , P. (18)

From Equation 18, we can see that proportions of all commodities travel forward

in a link along with vehicles in traffic flow, as the change of ξp in material space,

(ξp)t +V (a, ρ)(ξp)x, equals to zero. This is also true for all kinds of junctions, in

particular diverges, in their supply-demand models in the preceding subsection

5 Therefore, Equation 18 also means that the profile of proportions coincides

with vehicles’ trajectories on a link. That is, if two or more commodities ini-

tially completely are divided by an interface, this interface will move forward

along with vehicles on its both sides, and these commodities will never mix.

Since each single vehicle can considered as a commodity, all vehicles’ trajecto-

ries keep disjoint in the commodity-based kinematic wave models. Therefore,

FIFO principle is respected in this continuous model.

In the previous subsection, we studied the continuous kinematic wave theory

for total traffic. Here, we will present the discrete kinematic wave theory for

each commodity. Given traffic conditions of p-commodity at time step j, i.e.,
5That traffic is anisotropic is believed to regulate this property.
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ρj
p,i in all cells, we can calculate the traffic density of p-commodity in cell i at

time step j + 1 as

ρj+1
p,i = ρj

p,i +
∆t

∆x
(f j∗

p,i−1/2 − f j∗
p,i+1/2), (19)

where f j∗
p,i−1/2 is the in-flux of p-commodity through the upstream boundary of

cell i during time steps j and j+1, and f j∗
p,i+1/2 out-flux. Furthermore, since the

profile of the proportion of a commodity always travels forward at traffic speed,

the proportion of a commodity in out-flux of cell i compared to all commodities

is equal to the proportion of the commodity in the cell. I.e. (2),

f j∗
p,i+1/2 · ρ

j
i = f j∗

i+1/2 · ρ
j
p,i, p = 1, · · · , P. (20)

This is true for cells right upstream of merging junctions (14) and diverging

junctions (16, 1, 2, 17).

During time steps j and j + 1 at a boundary xi+1/2, which has U upstream

cells and D downstream cells, if we know the out-flux from upstream cell u (u =

1, · · · , U), f j∗
p,u,i+1/2 (p = 1, · · · , P ), we can obtain the in-flux of downstream

cell d (d = 1, · · · , D), f j∗
p,d,i+1/2 (p = 1, · · · , D), from traffic conservation in

p-commodity:

U∑
u=1

f j∗
p,u,i+1/2 =

D∑
d=1

f j∗
p,d,i+1/2. (21)

However, when p-commodity vehicles can take more than one downstream cells,

we have

P∑
p=1

f j∗
p,d,i+1/2 = f j∗

d,i+1/2. (22)

Note that, in Equation 17, the kinematic wave solutions are determined by

those of total traffic, which are obtained by the first-order convergent Godunov

method. Also from Equation 18, we can see that Equation 20 yields an up-wind

method for ξp in Equation 19. Therefore, the discrete model for the commodity-

based kinematic wave model, Equation 17, converges in first order to continuous
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version, whose solutions observe FIFO principle. That is, in numerical solutions,

error in travel time of any vehicle is in the order of ∆t. That is, in the MCDKW

model, FIFO is accurate to the order of ∆t and ∆x. Therefore, when we decrease

∆t, this approximation becomes more accurate.

3 Cumulative flow, travel time, and other prop-

erties of a road network

In the MCDKW simulation, we keep track of the change of traffic densities of all

cells and fluxes through all boundaries. Besides, these quantities are specified

for commodities. In this section, we will discuss how to obtain other traffic

information from these quantities.

3.1 Cumulative flow and vehicle identity

Cumulative flow at a boundary xi−1/2 from time t0 to t, N(xi−1/2; [t0, t]), is the

total number of vehicles passing the spot during the time interval. If the flux is

f∗(xi−1/2, s) at time s, then we have

N(xi−1/2; [t0, t]) =
∫ t

s=t0

f∗(xi−1/2, s) ds. (23)

Correspondingly, the discrete cumulative flow, N(xi−1/2; [J0, J ]), which is from

time steps J0 to J , is defined as

N(xi−1/2; [J0, J ]) =
J−1∑
j=J0

f j∗
i−1/2 ∆t, (24)

where f j∗
i−1/2 is the flux at xi−1/2 during time steps j and j + 1.

A curve of cumulative flow versus time is also known as a Newell-curve or

simply N-curve (5), since Newell (7) developed a simplified version of the LWR

kinematic wave theory based on this concept.

From the definition of cumulative flow, we can see that an N-curve is non-

decreasing in time. Further, it is increasing when passing flow is not zero.
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Although densities and fluxes are quantities at the aggregate level, the

MCDKW model is capable of tracking traffic information at the commodity

level. This can be done also with cumulative flows: a vehicle passing a cell

boundary at a time step can be labelled by the corresponding cumulative flow.

If all cumulative flows are synchronized; for example, when the initial traffic in

a road network is empty, then the same cumulative flow of a commodity refer

to the same vehicle. This fact is due to the FIFO property in all commodities.

6

Therefore, in the MCDKW simulation, with curves of cumulative flows as a

bridge between the aggregate and disaggregate quantities, we are able to keep

track of vehicle trajectories, accurate to the order of ∆x and ∆t, from cumulative

flows at all cell boundaries. Further, with finer partition of each link, we can

obtain more detailed information at the disaggregate level.

3.2 Travel time

In this subsection, we define commodity travel time, which is indeed path travel

time, since a commodity consists of all vehicles using the same path. For a

vehicle, which can be identified by its commodity cumulative flow number under

FIFO, its travel time across a link or from the origin to the destination can be

inferred from N-curves. For example, when we know its arrival and departure

times to a link from the corresponding N-curves, we can easily compute its travel

time across the link.

This can be demonstrated in Figure 2. In this figure, the left curve is the

N-curve at location x1, and the right curve at x2. These two curves are syn-

chronized in the sense that the vehicles between x1 and x2 at t = 0 are not

counted in N(x2; [0, t]). Therefore, from FIFO, we can see that the N0 vehicle

on the left N-curve is the same as the N0 vehicle on the right N-curve. Then,
6When type 4 diverge appears, this has to be checked.
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from the curve, we know that the times of the N0 passing x1 and x2 are t1 and

t2 respectively. Thus, its travel time from x1 to x2 is t2 − t1.

In Figure 2, the left N-curve reaches a maximum at some time and stop

increasing after that. This means that no flow passes x1 after that time. The

right N-curve has the same pattern. In such cases, one has to be cautious when

computing travel time for the last vehicle, identified by the maximum cumulative

flow, which corresponds to multiple values in time. Rigorously, therefore, the

time for a vehicle N0 passing a location x, where the N-curve is N(x; [t0, t]), can

be defined by

T (N0;x) = min
s
{s

∣∣when N(x; [t0, s]) = N0}. (25)

Further, the travel time for the N0 vehicle from x1 to x2 is

T (N0; [x1, x2]) = T (N0;x2)− T (N0;x1). (26)

With the definition of passing time in Equation 25, at x, the vehicle identity

N0 has a one-to-one relationship with its passing time T (N0;x). Therefore, the

passing time can be considered as another identity of a vehicle. For a vehicle

N0, if we know its passing time at any location in a road network, we then

obtain its trajectory.

From the travel times of individual vehicles, we are able to compute the

total travel time between two locations, in particular between an O/D pair, as

follows:

T ([N1, N2]; [x1, x2]) =
N2∑

M=N1

T (M ; [x1, x2]), (27)

where N1 is the first vehicle and N2 the last. We can see that, in Figure 2,

the total travel time is equal to the area between the two N-curves. Then the

average travel time for each vehicle will be

T̄ ([N1, N2]; [x1, x2]) ≡ T ([N1, N2]; [x1, x2])
N2 −N1

=

∑N2
M=N1

T (M ; [x1, x2])
N2 −N1

.(28)
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Moreover, for a road network, we can integrate travel times for all O/D

pairs and, therefore, obtain the total travel time and the average travel time

for the whole road network. These quantities are important indicators of the

performance of a road network. Besides, we consider the loading time for an

amount of flow to be released from an origin as another performance indicator.

Hence, the MCDKW simulation platform can be applied to evaluate traffic

management and control strategies, such as route assignment and ramp metering

algorithms.

4 Simulation results

In this section, we investigate the properties of the MCDKW model through

simulations. We will show the evolution of traffic and examine the convergence

of solutions. In this section, the diverge connecting links 2, 3, and 4 is modelled

by Equation 11.

4.1 Simulation set-up

For these simulations, the network has the structure as shown in Figure 1. In

this network, links 2, 3, and 5 have the same length, 20 miles, and the length of

link 4 is 40 miles (not drawn to proportion); link 2 has three lanes, and the other

links has two lanes; all links have the same triangular fundamental diagram (7):

Q(a, ρ) =

 vfρ, 0 ≤ ρ ≤ aρc;
ρc

ρj−ρc
vf (aρj − ρ), aρc < ρ ≤ aρj ;

(29)

where ρ is the total density of all lanes, a the number of lanes, the jam density

ρj=180 vpmpl, the critical density ρc=36 vpmpl, the free flow speed vf=65

mph, the capacity of each lane qc = ρcvf=2340 vphpl, and the corresponding

shock wave speed of jam traffic is cj = −ρc/(ρj − ρc)vf ≈ −17 mph.

Initially, the road network is empty. Boundary conditions are defined as

follows. Traffic supply at the destination is always 2qc. At origin, traffic demand
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at the origin is 3qc during [0, 6.0] and zero after that, and the proportion of

commodity 0, which takes link 3 instead of 4, is always ξ = 70%.

Links 2, 3, and 5 are partitioned into N cells each, and link 4 into 2N cells,

with each cell of the same length, ∆x = 20/N miles. The total simulation

time of 8.4 hours is divided into K time steps, with the length of a time step

∆t = 8.4/K. In our simulations, we set N/K = 1/30. Thus the CFL (12)

number is no larger than vf∆t/dx = 0.91, which is valid for Godunov method

(11).

4.2 Traffic patterns on the road network

We let N = 400 and K = 12000. Hence ∆x = 0.05 miles=80 meters, and

∆t = 0.0007 hours=2.52 seconds. Here the sizes of road cells and time steps are

relatively small, in order for us to obtain results closer to those of the kinematic

wave theories with the Godunov method.

The contour plots of the solutions are shown in Figure 3. From these figures,

we can divide the evolution of traffic dynamics on the road network into three

stages.

In the first stage starting from 0, vehicles embark link 2 with the free flow

speed, prevail the link in its critical density 3ρc, and arrive junction 1 at t1 =

20/65 hr. At the diverge, junction 1, fluxes are computed from Equation 11:

out-flux of link 2 is

f2,out = min{3qc,
2qc

0.7
,
2qc

0.3
} =

20
7

qc,

which is slightly smaller than the in-flux of link 2, in-flux of link 3 is f3 =

0.7f2 = 2qc, which is its capacity, and in-flux of link 4 is f4 = 0.3f2 = 6
7qc,

which is less than half of its capacity. After t1, two streams of free flow form on

links 3 and 4, and a backward travelling shock wave forms on Link 2, and the

shock wave speed is

vj = −1
4
vf .

17



At t2 = t1 + 20/vf , the first vehicle on link 3 reaches junction 2, which is a

merge. At t2, the first vehicle on link 4 is half way back since the length of link

4 is double of link 3’s. From the merge traffic flow model, Equation 7, we have

the in-flux of link 5 as

f5,in = min{2qc, 2qc} = 2qc,

which is also the out-flux of link 3. After t2, the proportion of commodity 0 on

link 5 is 1, as we can see on the bottom right figure.

The second stage starts at t3 = t1 + 40/vf = 60/65 hr, when the first

vehicle on link 4 reaches junction 2. After that, the in-flux of link 5 is still 2qc,

but the proportion of commodity 0 reduces to 0.5714 since commodity 1 also

contributes; on link 3, a new state forms at ρ = 195.4290 vpm, which is over-

critical, and a shock wave travels upstream at the speed of |cj | ≈ 17 mph; on link

4, ρ = 30.8571 vpm, which is under-critical. At t4 = t3+20/|cj | = 140/65 hr, the

back-traveling shock on link 3 hits junction 1, and the traffic supply on link 3 is

reduced. Therefore, the out-flux of link 2 is further reduced, and link 2 becomes

more congested, as shown in the top left picture. This also reduces traffic flow on

link 4, and the reduced flow reaches junction 2 at t5 = t4 + 40/vf = 180/65 hr.

After t4, link 3 becomes less congested, and a rarefaction wave travels backward

on it at |cj | ≈ 17 mph; the proportion of commodity on link 5 gets higher. From

the bottom middle figure, we can see that at t5 = t4 +20/|vj |, traffic density on

link 4 swings back a little due to the back traveling rarefaction on link 3. This

shift is transported to junction 2 at t6 = t5 +40/vf and oscillates traffic density

on link 3 and the proportion of commodity 0 on link 5.

The third stage starts at t7 = 6, when traffic demand from origin subsides

to zero. After that, a shock forms on link 2 and travels forward, and propagates

to link 4 and link 3. On link 4 the shock travels at vf , and on link 3 it travels

slower. This is why the proportion of commodity 0 on link 5 becomes 1 before

it is emptied.
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This simulation indicates that oscillation of traffic conditions can be caused

by network merges and diverges even when the initial and boundary conditions

are very nice. The traffic flow pattern on this road network suggests that, if

we keep the same demand from the origin, an equilibrium state will be reached

after some time.

The traffic patterns in Figure 3 can be partially observed from the top left

figure in Figure 4, where the thicker four curves give cumulative flows for com-

modity 0, the thinner for commodity 1, and solid, dashed, dotted, and dash-dot

curves are for cumulative flows at junction 0, 1, 2, and 3, respectively. In

the bottom left figure, the solid lines are cumulative flows of commodity 0 at

origin/destination, i.e., junction 0 and 3, the dashed curve is the number of com-

modity 0 vehicles in the network at a time, the dashed line shows the average

number, the dotted curve is the travel time of a commodity 0 vehicle identified

by its cumulative flow, and the dotted line is the average travel time. The bot-

tom right figure has the same curves and lines as the bottom left figure, except

that they are for commodity 1. Here travel time of individual vehicle is com-

puted by Equation 26, total travel time by Equation 27, and average travel time

by Equation 28. Although the formulas were developed for link travel times,

it is valid for a network as long as vehicles of each commodity observe FIFO

principle. Total (TTT) and average (ATT) travel times are listed in Table 1

(unit=hours).

Thus, vehicles that take link 4 on average use shorter time, which is still

longer than the free flow travel time, 80/65 hr. Obviously, if all vehicles at origin

decide to take link 3, the travel time, 60/65 will be the shortest possible travel

time between the origin and destination. Therefore, this assignment fraction,

70%, is not an optimum one.
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4.3 Convergence of the MCDKW simulation model

In this subsection, we study the convergence of the MCDKW simulation plat-

form with increasing number of cells. Here we use the same road network, initial

and boundary conditions as in the preceding subsection. Here we intend to show

convergence in average travel times of both commodities.

Denoting the average travel time of a commodity, T , as a function of the

number of cells, N ; i.e., T = T (N), we can define the relative error, from N to

2N , by

ε2N−N = |T (2N)− T (N)|. (30)

Then a convergence rate is computed by

r = log2(
ε2N−N

ε4N−2N
). (31)

The convergence rates of the average travel times are given in Table 2.

From the table, we can see that average travel times are also convergent

in first order. Note that this convergence is different from the aforementioned

traffic conditions converging to certain equilibrium state. Moreover, we can see

that the results with N = 200 is already accurate enough in this case. Since

the computation time of the MCDKW simulation platform is quadrupled when

N is doubled, in later simulations, we use ∆x = 0.1 mile=160 meters and

∆t = 0.0014 hours= 5.04 seconds with the same simulation period.

5 Discussions

In this paper, we proposed the Multi-Commodity Discrete Kinematic Wave

(MCDKW) model. In this model, we integrated various kinematic wave theo-

ries for individual components and carefully discussed commodity-based kine-

matic wave theories. We further demonstrated how to obtain cumulative flows

and travel times from outputs of MCDKW simulations. Simulations show that
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numerical results converge to FIFO solutions although the FIFO condition is

not strictly enforced in the discrete form of commodity-based kinematic wave

theories.

Different from many existing simulation packages, where traffic is tracked

down to the vehicle level, the MCDKW simulation concerns traffic conditions

down to the commodity level. The simulation model is designed for handling

very large road networks and can be applied in dynamic traffic assignment, dy-

namic O/D estimation, and so forth. However, as pointed out earlier, the effects

of “departure from FIFO” should be carefully considered in these applications.

In the future, the MCDKW model can be enhanced in three aspects. Theo-

retically, vehicle types and special lanes can be incorporated (18), and nonequi-

librium continuum models (19) may also be integrated. Numerically, parallel

algorithms can be applied to improve computational speed since traffic condi-

tions on different links can be updated simultaneously, and the consumption of

computer memory will be checked. Finally, for different applications, we also

plan to design different input/out interfaces. For example, the network struc-

ture can be imported from GIS (Geographic Information System) data files, and

boundary conditions and output can be manipulated for different applications.
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Total Number of Vehicles TTT ATT

Commodity 0 23,859 4.7291×104 1.9822

Commodity 1 10,225 1.7372×104 1.6989

Table 1: Total travel time (TTT) and average travel time (ATT) for two com-

modities

Commodity 0 N=200 N=400 N=800 N=1600 N=3200

ATT 1.98189893 1.98215215 1.98227240 1.98234941 1.98239377

Error [10−3] 0.2532 0.1202 0.07700 0.0444

Rate 1.074 0.6430 0.7958

Commodity 1 N=200 N=400 N=800 N=1600 3200

ATT 1.69922958 1.69892887 1.69877593 1.69871236 1.69868722

Error [10−3] -0.3007 -0.1529 -0.0636 -0.0251

Rate 0.9755 1.2664 1.3384

Table 2: Convergence rates for the MCKW simulation platform
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Figure 1: A demonstration road network

Figure 2: Cumulative flows and travel time
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Figure 3: Contour plots of network traffic flow
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