Freshmen Advising
Civil & Environmental Engineering
Winter 2010 for 2010-2011 AY
Professor M. G. McNally

- UG Advising: Faculty, Counselors, Catalogue
- CE & EnE Degree Programs; Academic Honesty
- Performance Assessment and Accreditation
- Professional Registration (FE) & Grad School
- Where to Find Program Information and Advice
- Questions? E-mail me at mmcnally@uci.edu
UNDERGRADUATE ADVISING PROCESS

• **Annual Process**: *every year!*
 – **Group Advising**: sessions for Freshmen in the Fall/Winter and separate sessions for Sophomores and for Junior/Seniors in Spring.
 – **Individual Advising**: select a faculty member by name, teaching and research area, or session format (either individual 15 minute session or a small group session). Sign-ups at Group Session.
 – *If you are registering in the next quarter, you must participate!*

• **HSSOE Counselors**: *see them first!*
 – “Advising-R-Us” ECT101 (824-4334)

• **Student Plan of Study**:
 – Schedule course work for 1-2 years in advance
 – Ensures that you are on schedule for graduation

• **UCI General Catalogue**: Your *contract* with UC
 [http://www.editor.uci.edu/09-10/engr/engr.6.htm]
• Q1. Are you currently a freshman or transfer? If you did not declare a CE or EnE major by Fall 2009, you must attend CEE Undergraduate Advising in Spring 2009.

• Q2. Is your current Program of Study valid? If not, you must meet with an HSSoE undergraduate counselor to update this form before your registration hold will be removed.

• Q3. Are you scheduled for individual advising? At the end of this session, be sure to register for an individual faculty advising session to be held during the next two weeks.

• Sign and Return!
Structural Engineering Faculty

Dr. Feng, EG 4165
Structural Health Monitoring
CEE 151A, CEE 153

Dr. Mosallam, EG 4149
Composite Structures
CEE 151C

Dr. Shinozuka, EG 4150
Earthquake Engineering
and Risk Analysis

Dr. Sun, EG 4139
Mechanics, Composites
CEE 30, CEE 152

Dr. Yang, EG 4135
Structural Control
and Dynamics

Dr. Zareian, EG 4141
Earthquake Engineering
CEE 150
Hydrology & Water Resources Faculty

Dr. Detwiler, ET 844C
Groundwater Hydrology
CEE 171

Dr. Sanders, ET 844D
Computational Hydrodynamics
CEE 20

Dr. Sorooshian, AIRB 2084
Hydrologic systems
CEE 176

Dr. Gao, AIRB 2085
Hydroclimatology
CEE 283

Dr. Hsu, AIRB 2072
Hydrologic Modeling
CEE 170

Dr. Imam, AIRB 2086
Hydrologic Modeling
CEE 173
Environmental Faculty

Water (cont’d.)

Dr. Bras, 301 REC
Dean, HSSOE
Hydrology & Geomorphology

Dr. Cooper, ET 305
Environmental Chemistry
CEE 162

Dr. Jiang, SE2 1367
Water Quality
CEE 167

Dr. Vrugt, ET 844E
Systems Modeling

Dr. Olson, SE2 1361
Environmental Microbiology
CEE 60

Dr. Rosso, ET 844F
Environmental Processes
CEE 161
FRESHMEN/SOPHOMORE ISSUES

• What’s New?
 – CEE81A and CEE81B: combined this spring
 – CEE60 vs Soc Ecol E8 (Gen Ed)
 – Engineering Science Elective & Engr. Design Elective

• What Choices?
 – Degree programs? Specializations? Minors?
 – General Education Options? When?
 – Freshman/Transfer Seminars

• Student Clubs & Professional Associations
• E-Week – February 19th - 22nd – Get Involved!
• Assessment (ABET) & Registration (FE, PE)
ABET Program Assessment

1. **Stakeholders** include students, faculty, alumni, and employers.

2. **Program Educational Objectives** describe expected accomplishments of graduates during the first several years following graduation.

3. **Program Outcomes** describe knowledge and skills to be attained by the time of graduation.

4. **Course Outcomes** (or Performance Criteria) are restatements of Program Outcomes that define specific knowledge and skills to be attained in a specific course.

5. **Degree Requirements** comprise core, specialization, and General Ed courses, and a capstone design experience.
6. A comprehensive Assessment Process is applied to evaluate the CE & EnE degree programs.

a. **Assessment by Students**: tools include standard UCI Course Evaluation Surveys, HSSOE Course Outcome Surveys, Graduating Senior Program Outcome Surveys, and Senior Exit Interviews.

b. **Assessment by Faculty**: tools include course grades (may include exams, homework, laboratory exercises, and projects), HSSOE and CTQ Instructor Course Outcome Surveys, and Analysis of FE Exam Results.

c. **Assessment by Faculty and Industry**: tools include the assessment of CEE181ABC Senior Design Project presentations and reports.

d. **Assessment by Industry**: tools include the Industry Survey of Program Educational Objectives and Program Outcomes, regular meetings with the Corporate Affiliates, and participation in departmental retreats.

e. **Assessment by Alumni**: tools include the Alumni Survey of Program Educational Objectives and Program Outcomes, as well as participation in departmental retreats and alumni events.
BSCE Degree Program

Program Educational Objectives:

Describe the expected accomplishments of graduates during the first few years following graduation. Our graduates are expected to:

1. Establish a Civil Engineering career in industry, government, or academia and achieve professional licensure as appropriate.
2. Demonstrate excellence and innovation in engineering problem solving and design in a global and societal context.
3. Commit to lifelong learning and professional development to stay current in technology and contemporary issues.
4. Take on increasing levels of responsibility and leadership in technical and/or managerial roles.

Note: EnE PEOs are virtually identical 2009
BSCE Degree Program

Program Outcomes:

Describe what students are expected to know or be able to do by graduation (a-k)

a. An ability to apply knowledge of mathematics through differential equations; probability and statistics; calculus-based physics; general chemistry; and engineering science in the context of civil engineering applications.

b. An ability to design and conduct laboratory experiments, as well as to critically analyze and interpret data, in two or more recognized major civil engineering areas, such as structures, transportation, water resources, and environmental.

c. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, constructability, and sustainability.

d. An ability to function in multidisciplinary teams.

e. An ability to identify, formulate, and solve civil engineering problems in at least four recognized major civil engineering areas.

2009
Program Outcomes (continued)

f. An understanding of professional and ethical responsibilities of civil engineers in relation to public and private institutions and in the context of civil engineering infrastructure systems.

g. An ability to communicate effectively, orally and in writing.

h. A broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

i. A recognition of the need for professional licensure and life-long learning.

j. Knowledge of contemporary issues related to civil engineering.

k. An ability to use the techniques, skills, and modern engineering tools necessary for civil engineering practice, and an understanding of professional practice issues such as project management and interactions between the development, design, and construction professions.
CEE 30 STATICS
(Required for CE and EnE)

Catalog Data: CEE 30: Statics (Credit Units 4) Addition and resolution of forces, distributed forces, equivalent system of forces centroids, first moments, moments and products on inertia, equilibrium of rigid bodies, trusses, beams, cables. Corequisite or prerequisite: Mathematics 2D. Prerequisite: Physics 7A. Only one course from CEE30, ENGR30, and MAE30 may be taken for credit (Design Units: 0)

Relationship to Program Outcomes: - The course relates to Program Outcomes
CE: a and e as stated at:
http://undergraduate.eng.uci.edu/degreeprograms/civil/mission
EnE: a and e as stated at:
http://undergraduate.eng.uci.edu/degreeprograms/environmental/mission

Course Outcome/Performance Criteria: Students will:
Analyze and draw free body diagrams for single particles and rigid body systems.
Establish equilibrium equations of particles/rigid bodies for solve for forces and support reactions.
Calculate centroids of areas and moments of inertia.
Apply the theory and methods to analyze simple trusses.
Compute internal forces in cables/beams.
Formulate statics problems for simple structural beams.
Mathematics and Basic Science (48 units)
- Math2A-B-D-E-J, 3D, CEE 11
- Phys7C-D and 7LC-D
- Chem1A-B, 1LB (1LE also acceptable but is 3 units)

General Education Requirements (44+ units)
- Provides flexibility, overlaps encouraged, etc.
- Engineering Professional Topics Courses include Economics 20A-B and CEE60 (or SocEcol E8)

CEE81A and 81B evolving…
CE Course Requirements 2

Engineering Topics Courses (77 units):
- **LD Core:** EECS 10, CEE 20, 30, 80, 81A-B
- **UD Core:** CEE 110, 111, 121, 130, 130L, 150, 150L, 151A, 151C, 161, 170, and 171
- Engineering Science Elective (materials, circuits, thermo, science)
- Engineering Design Elective (one of 151B, 172, 122 or 123)
- Senior Design Practicum: CEE 181A-B-C

Specialization or Concentration (16+ units)
- Must complete senior design project in same area

Summary
- A nominal total of **185** units (24+ design units)
BSCE: Freshman 2009-2010

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2A</td>
<td>4</td>
<td>Math 2B</td>
<td>4</td>
</tr>
<tr>
<td>EECS 10</td>
<td>4</td>
<td>Phys 7C, L</td>
<td>5</td>
</tr>
<tr>
<td>Chem 1A</td>
<td>4</td>
<td>Chem 1B, L</td>
<td>6</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: WR39B-C, CEE60
- **EECS10**, EECS12, MAE10, or any programming course!
BSCE: Sophomore 2009-2010

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2J</td>
<td>4</td>
<td>Math 3D</td>
<td>4</td>
</tr>
<tr>
<td>Math 3D</td>
<td></td>
<td></td>
<td>Math 2E</td>
</tr>
<tr>
<td>CEE 30</td>
<td>4</td>
<td>MAE 80</td>
<td>4</td>
</tr>
<tr>
<td>CEE 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Engr Sci</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16 16 16

- Gen Ed Recommendation: Econ 20A-B, **CEE60**
- **Engr Science** Elective => fall, winter, or spring
BSCE: Junior 2009-2010

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 150, L</td>
<td>5</td>
<td>CEE 151A</td>
<td>4</td>
</tr>
<tr>
<td>CEE 170</td>
<td>4</td>
<td>CEE 171</td>
<td>4</td>
</tr>
<tr>
<td>CEE 121</td>
<td>4</td>
<td>CEE 130, L</td>
<td>5</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

- **Engr Design** Elective (151B, 172, 122 or 123)
- Civil Engineering “core”; consider pre-requisites!
BSCE: Senior 2009-2010

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 181A</td>
<td>2</td>
<td>CEE 181B</td>
<td>2</td>
</tr>
<tr>
<td>CEE 151C</td>
<td>4</td>
<td>CEE 111</td>
<td>4</td>
</tr>
<tr>
<td>Spec. Elec.</td>
<td>4</td>
<td>Spec. Elec.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

- Specialization or concentration, and 181 sequence
- CEE 181 A-B-C with UD Writing or E190
- Specialization Elective: flexibility with 4th course!
Specializations 1

General Civil Engineering:
Requires four courses from CEE122 or CEE123; CEE152, CEE153, CEE155, or CEE156; CEE162, 167, or CEE168; CEE172, CEE176, or CEE178; or CEE55 or courses from an approved list.

Environmental Hydrology & Water Resources:
Requires four courses from CEE162, CEE163, CEE172, CEE173, CEE176, CEE178, or courses from an approved list.
Specializations 2

Structural Engineering:
Requires CEE153 and three courses from CEE152, CEE155, CEE156, MAE157, or courses from an approved list.

Transportation Systems Engineering:
Requires CEE122 and CEE123, and two courses from CEE 124, CEE125, ECE 70A, MAE 140, MAE 170, MAE 171, or courses from an approved list.

[CEE 198/199 ITE Project]
Concentrations comprise courses primarily from other Schools and thus more courses than for specializations. *CEE does not control the scheduling for these courses.*

Computer Applications:
Requires at least five classes or 20 units from ICS/Math 6A, ICS21, 22, 23, 52, EECS 20, EECS 40, and other approved courses.

Infrastructure Planning:
Concentrations 2

Mathematical Methods:

Engineering Management *:
Requires MGT 5 and five other courses from CEE 112, E190, E192, E193, or MGT 160, 181, 183, 185, 188, and other approved courses.

* must be admitted to PMSOB UG Minor in Management
Key Pre-requisites

Prerequisite Chains for CEE181ABC

Note:
- Math and science pre-reqs are not shown
- For 1 through 7, specific pre-reqs are not shown
- For 4, there are no formal pre-reqs
Program Educational Objectives:

Describe the expected accomplishments of graduates during the first few years following graduation. Our graduates are expected to:

1. Establish an Environmental Engineering career in industry, government, or academia and achieve professional licensure as appropriate.
2. Demonstrate excellence and innovation in engineering problem solving and design in a global and societal context.
3. Commit to lifelong learning and professional development to stay current in technology and contemporary issues.
4. Take on increasing levels of responsibility and leadership in technical and/or managerial roles.
EnE Program Outcomes:

Describe what students are expected to know or be able to do by graduation (a-k)

a. An ability to apply knowledge of mathematics through differential equations, probability and statistics, calculus-based physics, general chemistry, an earth science and biological science relevant to environmental engineering, and fluid mechanics in the context of environmental engineering.

b. An ability to design and conduct experiments, as well as to analyze and interpret data in more than one environmental engineering focus area such as: air, water, land or environmental health.

c. An ability to design an environmental engineering system, component, or process to meet desired needs within realistic constraints such as economic, social, ethical, political, constructability, and sustainability.

d. An ability to function in multidisciplinary teams.

e. An ability to identify, formulate, and solve engineering problems in more than one environmental engineering focus area such as: air, water, land or environmental health.
EnE Program Outcomes (continued)

f. An understanding of professional and ethical responsibilities of environmental engineers in relation to public and private institutions and in the context of environmental systems (e.g., drinking water distribution, waste management).

g. An ability to communicate effectively, orally and in writing.

h. A broad education necessary for understanding the societal and economic impacts of engineering solutions to environmental problems at both regional and global scales.

i. Recognition of the need for, and an ability to engage in life-long learning.

j. Knowledge of contemporary issues related to environmental engineering.

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice, an understanding of the importance of licensure for professional practice, and an introduction to administrative business (planning, contracting, etc.) of professional practice.
EnE Course Requirements 1

Mathematics and Basic Science (64 units)
- Math 2A-B-D-J, 3D, 2E
- Phys 7C-D, 7LC-D
- Chem 1A-B-C, 1LB-LC, 51A, 51LA
- 4 units of Earth System Science and 4 units of Biological Sciences

General Education Requirements (44+ units)
- Engineering Professional Topics Courses include:
- Economics 20A-B and CEE60 (or Soc Ecol E8)
Engineering Topics Courses (81+ units):
• LD Core: EECS 10, CEE 11, 20, 30, 80, 81A, 81B, thermo
• UD Core: CEE 110, 130, 130L, 150, 150L, 161, 162, 168, 170
• **New:** CEE 6L Introduction to Environmental Engineering (1)
• **New:** selected core alternatives eliminated
• Senior Design Practicum: CEE 181A-B-C (options)
• Engineering Electives (2 from 2 areas/1 from other):
 – Water Supply and Resources (CEE171, 172, 173, 176, 178, ESS132)
 – Waste Water Management (CEE 161, 163, 165)
 – Atmos Systems & Air Poll Control (MAE110, 115, 162, 164, ESS 112)
• A nominal total of 189 units

• **Must verify Program of Study and unit counts with UG Office**
BS EnE: Freshman 2009-2010

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2A</td>
<td>4</td>
<td>Math 2B</td>
</tr>
<tr>
<td>EECS 10</td>
<td>4</td>
<td>Phys 7C, L</td>
</tr>
<tr>
<td>Chem 1A</td>
<td>4</td>
<td>Chem 1B, L</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
</tr>
</tbody>
</table>

| | 16 | 19 | 20 |

- Gen Ed Recommendation: WR39B-C or CEE60
- Spring Quarter tough! Can 81A-B be delayed?
BS EnE: Sophomore 2009-2010

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2J</td>
<td>4</td>
<td>Math 3D</td>
<td>4</td>
</tr>
<tr>
<td>Math 2E</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 81B</td>
<td>2</td>
<td>Chem 51A, L</td>
<td>6</td>
</tr>
<tr>
<td>MAE 91</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 30</td>
<td>4</td>
<td>MAE 80</td>
<td>4</td>
</tr>
<tr>
<td>CEE 11</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>

- Various options for MAE 91 (thermodynamics)
- Gen Ed Recommendation: CEE60
BS EnE: Junior 2009-2010

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 150, L</td>
<td>5</td>
<td>CEE 130, L</td>
<td>5</td>
</tr>
<tr>
<td>CEE 170</td>
<td>4</td>
<td>CEE 162</td>
<td>4</td>
</tr>
<tr>
<td>Sci. Elect.</td>
<td>4</td>
<td>Eng. Elect.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

- Consider pre-requisites!
- Science Electives: 1 each in Bio Sci and Earth Systems Sci
BS EnE: Senior 2009-2010

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 181A</td>
<td>2</td>
<td>CEE 181B</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Elect.</td>
<td>4</td>
<td>CEE 168</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Eng. Elect.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

- Spread Gen Ed (include Econ 20A-B, UD Writing)
- Consider pre-requisites for Science and Engineering Electives
1. General Education requirements:
 • *Writing* (3 courses)
 • *Arts and Humanities* (3 courses)
 • *Social and Behavioral Sciences* (3 courses)
 • *Multicultural Studies / International Issues* (1)

2. BSCE and BSEnE already cover:
 • *Science and Technology*
 • *Quantitative, Symbolic, Computational Reasoning*

3. Need to consult with HSSoE counselors
Academic Honesty

• Civil and Environmental Engineering is perhaps at the pinnacle of the practice of, and the need for, ethical behavior.

• At you progress through the program, any form of cheating has *minimum benefit* (on grades) and *maximum cost* (of not finishing your degree).

• The UCI Policy on Academic Honesty is defined at: http://www.editor.uci.edu/09-10/appx/appx.2.htm#gen0

• Take note of the descriptions of cheating, dishonest conduct, plagiarism, and collusion.

• Ask your instructors to discuss course policies on Academic Honesty, including policies on joint work on HW, labs, or other required tasks.
1. **Profession Registration**: licensure as a professional engineer is required to practice as a civil or environmental engineer.

2. **Steps Toward Licensure: First…**
 a. Complete a BS from an accredited institution (UCI!)
 b. Successfully complete the *Fundamentals of Engineering* exam (material covered includes physics, chemistry, thermo, circuits, mathematics, statics & dynamics, engineering economics, fluids, engineering ethics, strength of materials, computers, etc.)

3. **Steps Toward Licensure: Then…**
 a. After 2 years of work under professional engineers…
 b. Successfully complete the *Principles and Practice of Engineering* (PE)
Why study Civil Engineering abroad?

"As a Civil Engineering student studying abroad, you will gain exposure to different modes of problem solving, leading toward different approaches to the design and implementation of civil engineering projects. In light of the increasing globalization of engineering practice, this acquired knowledge will likely be beneficial in your future engineering career. You will see the significance of US building codes and how these are implemented in other countries, as well as how the US adopts sections of engineering building codes from other countries. EAP programs often have more academic support staff to assist engineering professors with computing, wet/dry, and field labs, which leads toward more meaningful laboratory experiences. Not only will EAP be one of the most memorable times in your life, the international experience will open a world of engineering opportunities in your future."

Professor Michael McNally
Department of Civil & Environmental Engineering

http://www.cie.uci.edu/academics/ce.html
Further Information?

http://undergraduate.eng.uci.edu
Summary

1. Academic Honesty…
2. ABET evaluations versus UCI course evaluations
3. Civil Engineering Specializations and Concentrations
4. Petitions: substitutions, variations, and related issues
5. Student Clubs? [G-E-T I-N-V-O-L-V-E-D]
6. Independent Study and Research Opportunities?
7. Internships, Jobs, Careers
8. Graduate School? (GRE)
9. Professional Practice (FE, PE, professional societies)
Contact Information

HSSOE UG Affairs Office:
1. UG Counselors in ECT 101 (824-4334)
2. Web site: http://undergraduate.eng.uci.edu/

Civil & Environmental Engineering:
1. Department Office in EG 4130 (824-5333)
2. CEE web site: http://www.eng.uci.edu/dept/cee/
3. CE Advisor: Professor McNally <mmcnally@uci.edu>
4. EnE Advisor: Professor Detwiler <detwiler@uci.edu>