Macroscopic Models of Lane-Changing, Bounded Acceleration, and Capacity Drop

Wen-Long Jin
UC Irvine
Outline

• Introduction
• Lane-changing
 • Phenomenological model
 • Behavioral model
• Bounded acceleration
• Capacity drop
 • Behavioral model
 • Phenomenological model
• Conclusion
Introduction
Freeway network
Arterial network
Stop-and-go traffic

SHOCKWAVE TRAFFIC JAMS RECREATED FOR FIRST TIME

Footage courtesy of University of Nagoya, Nagoya, Japan
Inter-vehicle communication
CAV emulation
A control system view

Desired performance

Control, Management, Planning, Design, ...

Transportation systems

Detection, Estimation, Communication

Safety
Mobility
Costs
Emissions
Land use
Driver vs network behaviors

- Social
 - house/job
 - trip/destination
 - mode/vehicle
 - departure time
 - route
 - speed/lane
 - maneuvering

- Economics

- Physics

Bottlenecks
- Network congestion

Centralized control

Distributed cooperative control
Lighthill-Whitham-Richards model: Macroscopic

• variables
 • $k(t, x)$: density
 • $v(t, x)$: speed
 • $q(t, x)$: flow-rate

• Five rules
 R1. constitutive law: $q = kv$
 R2. fundamental diagram: $v = \eta(k)$, $q = \phi(k)$
 R3. continuity equation: $\frac{\partial k}{\partial t} + \frac{\partial q}{\partial x} = 0$
 R4. weak solutions: shock waves
 R5. unique solution: entropy condition

• The LWR model: R1+R2+R3
 $$\frac{\partial k}{\partial t} + \frac{\partial \phi(k)}{\partial x} = 0$$
Other models

• Microscopic models
 • car-following: Newell, Pipes, Optimal Velocity, GM
 • lane-changing: >40 parameters

• Simulators
 • Paramics, Transmodeler, Aimsun, VISSIM

• Advantages
 • detailed, individual characteristics

• Disadvantages
 • macroscopic characteristics
 • computational cost
Lane changing
Lane-changing bottleneck
First principle of lane changes

- First principle: One car occupies two lanes
- Effective total density: \(\text{Total vehicle} \times \text{lane} \times \text{miles} \)
- Lane-changing intensity: \(\epsilon (t, x) \)
 - effective total density = actual total density \(\times \) \((1 + \epsilon) \)
- Fundamental diagram with lane changes
 - \(v = V \left(\frac{k(1+\epsilon)}{l} \right) \)
 - \(q = k V \left(\frac{k(1+\epsilon)}{l} \right) \)
 - \(l \): number of lanes
Calibration and validation

• NGSim: I-80 in Emeryville (San Francisco), CA
 • 2:35-3:05pm, Dec 3, 2003 (1/15 sec)
 • 4-4:15pm, 5-5:30pm, Apr 13, 2005 (1/10 sec)
Kinematic wave model

• The LWR model: \(\frac{\partial k}{\partial t} + \frac{\partial k \cdot V \left(\frac{k(1+\epsilon)}{l} \right)}{\partial x} = 0 \)

• Inhomogeneous LWR model: \(\epsilon(t, x) \)

• Multi-lane fundamental diagram and LWR model
 • \(a(t, x) \): number of lanes
 \(\frac{\partial k}{\partial t} + \frac{\partial k \cdot V \left(\frac{k}{a} \right)}{\partial x} = 0 \)
 • lane changes = lane reduction (lane drop) \(\Rightarrow \) capacity reduction
 \(a = \frac{l}{1+\epsilon} \)

• References:
 • WL Jin, A kinematic wave theory of lane-changing traffic flow, Transportation Research Part B 44 (8-9), 1001-1021.
Behavioral model

• Total #/LC: \(N_{LC} = \frac{\phi}{n} T \cdot 1 + \ldots + \frac{\phi}{n} T \cdot (n - 1) = \frac{n-1}{2} \phi T \)
 - from right to left: #/LC linearly decreases
 - total #/LC proportional to on-ramp flow

• Constant lane-changing duration: \(\pi \)

• Intensity: \(\epsilon = \alpha \frac{\phi}{k} \)
 - \(\alpha = \frac{n-1}{2L} \pi \)

• Calibration and validation with NGSIM data
Kinematic wave model

• k: total density; ρ: weaving density
 • $\frac{\partial k}{\partial t} + \frac{\partial k \eta(k, \rho)}{\partial x} = 0$
 • $\frac{\partial \rho}{\partial t} + \frac{\partial \rho \eta(k, \rho)}{\partial x} = 0$

• Impacts of HOV lane at a lane-drop bottleneck
 • Increased throughput $\approx Q_{HOV} - 1400$

• References
 • Gan, Q.J. and Jin, W.L., 2015. Left-Lane Changes in Laterally Unbalanced Traffic: Estimating Number of Lane Changes with Data from Lane-Based Loop Detectors. Transportation Research Record: Journal of the Transportation Research Board, (2490), pp.106-115.
 • Gan, Q.J. and Jin, W.L., 2013. Validation of a macroscopic lane-changing model. Transportation Research Record: Journal of the Transportation Research Board, (2391), pp.113-123.
Bounded acceleration
Bounded acceleration model

• maximum acceleration rate without vehicles in the front: \(a = A(v) \)
 • \(v \in [0, u], 0 \leq A(v) \leq a_0 \)
 • \(A'(v) \leq 0 \)

• Examples:
 • constant: \(A(v) = a_0 \)
 • TWOPAS: \(A(v) = a_0 \left(1 - \frac{v}{u} \right) - gG \)
 • Gipps: \(A(v) = 2.5 \ a_1 \left(1 - \frac{v}{u} \right) \sqrt{0.025 + \frac{v}{u}} \)
 • no bound: \(A(v) = \infty \)
Stationary states inside a lane-drop zone
Capacity drop
Capacity drop
Cause of capacity drop?

• Acceleration?
 • the reduced flow is a consequence of the way drivers accelerate away from the queue (Hall and Agyemang-Duah, 1991)

• Lane changes?
 • lane changes are the main cause of the drop in discharge rate (Laval and Daganzo, 2006)
Optimization formulation of entropy condition

- max q^*
 - s.t. $q^* \leq d_1; q^* \leq s_2$;
 - bounded acceleration constraint: $a^*(x) \leq A(v^*(x))$

- Theorem. The following statements are equivalent:
 - New entropy condition
 - max q^* s.t. $q^* \leq d_1, q^* \leq s_2, H(d_1 - s_2) \cdot (q^* - C^-) \leq 0$
 - $q^* = \min\{d_1, s_2, l_2 C_1 (1 - \epsilon H(d_1 - s_2))\}$

- C^-: dropped capacity
 - ϵ: capacity drop ratio
Phenomenological model

• Three characteristics
 • the discharge flow-rate can reach the downstream capacity when the upstream link is uncongested
 • capacity drop occurs with the formation of an upstream queue
 • the downstream link cannot be stationary at all densities, and the observed flow-density relation is discontinuous.

• Model: \(q = \min\{d_1, s_2, l_2 C \left(1 - \epsilon H(d_1 - s_2)\right)\} \)

• References:
Application to sag/tunnel bottleneck
Conclusion
Summary

• Macroscopic models are extended in various ways
 • Fundamental diagram of lane-changing traffic
 • New entropy condition for capacity drop
 • Constraints on stationary states

• Lane-changing=lane reduction⇒ capacity reduction
 • but lane drops and sag/tunnels lead to more significant capacity reduction

• Bounded acceleration+Capacity reduction⇒capacity drop
 • lane changes are neither sufficient nor necessary conditions of capacity drop
 • there’s correlation at some locations
Applications

• Simple car-following models for lane-changing, bounded acceleration, and capacity drop
• Variable speed limit
• Ramp metering
• Control through connected and autonomous vehicles
• ...
Thank you!

Email: wjin@uci.edu