Low Cost Vehicle Detection System to Help “Green” UCI Parking

Presented by:

University of California, Irvine’s ITE Student Chapter

May 25, 2011

Presenters:
Benjamin Fuller (President)
Jonathan Masukawa (Vice President)
Overview

- Problem Definition
- Project Description
- Analysis
- Conclusions
- Recommendations
- Future considerations
Problem Definition

- Approximately 17,000 students and faculty commute to UCI
- Need to reduce greenhouse gas emissions by campus traffic
- UCI Parking and Transportation Services (PTS) is looking for ways to reduce the campus’s carbon footprint
Project Description

- Low cost vehicle detection system to measure vehicle occupancy of a parking structure by floor
 - Hybrid system comprised of inductive loop and video detection

- Applied system to the first floor of the Anteater Parking Structure

- Performed analysis and conclusions on system accuracy

- Utilized 45 active ITE student members
Campus Parking Map

Project Location

Major Parking Facilities
Description of System Location

- First detection location is at the structure’s entrance
 - **Temporary loop detectors:** “Blade” Detectors

- First detection location is at the structure’s entrance
 - **Video detector:** Webcam

Blade Detectors

Cabinet

Webcam Detector
System Components

Cabinet installed to house equipment

Blade Detectors

Webcam Detector

Cabinet

Router

Laptop

Input file
Candidate Detection Technologies

Intrusive
- Magnetometer
- Inductive loops

Non-Intrusive
- Infrared
- Video

Selection Criteria
- Accuracy
- Costs
- Implementation Restrictions
Hybrid Detection System

Blade Detector
- Most accurate
- Reliable
- Vehicle signatures

Webcam Detector
- Cost-effective
- Accurate with calibration
- Can be installed inside the parking structure
- Does not require traffic cabinet
UCI ITE Developed Software

- Programmed in Java by our chapter
- **CamFilter** interprets Zone Trigger data files
 - Fully automated system
 - Sensitivity calibration
- **BladeFilter** removes false detections from blade detector data
 - Threshold calibration
Analysis of Blade Detectors

- Blade detectors were 98% accurate
- Good vehicle signature (see right)
Analysis of Blade Detectors

- Inaccuracies
 - Tailgating vehicles (shown left)
 - False readings (shown right)

- False readings were removed via BladeFilter
Analysis of the Webcam

- Before calibration, detection accuracy was at 84%.
- Calibration test cases:
 - Excessive speed
 - Tailgating
 - Cars in passing
 - Pedestrians
 - Transitional lighting
- Through iterative calibration, 94% accuracy was achieved.
Analysis of Hybrid System

- After a 5-hour study, the occupancy of the first floor was detected at an accuracy of 98%
Conclusions

- Low cost and accurate monitoring system
- Blade detectors performed well
- A majority of inaccuracies were due to the webcam detector
 - Wireless communications was unreliable
 - Uncontrolled lighting conditions
Breakdown of Materials Used

Total Project Cost - $575
- UROP Grant - $325
- PTS - $250
Recommendations

- Extrapolate our system throughout campus
 - Sawcut permanent loops
 - Install webcams on each floor

- With the current state of our system, the occupancy level needs to be reset every day or two

- Avoid wireless communication

- Investigate further calibration of webcam detector

- Use higher quality cameras and professional video detection software
Future Considerations

- Phone application
 - Displays **live occupancies for each structure by floor**
 - Reduce time to find parking, resulting in lower emissions
Special Thanks

- We would like to thank everyone who has helped in the success of our project. Without these organizations, this project would not have been possible:
 - UCI Parking and Transportation (PTS)
 - Undergraduate Research Opportunities Program (UROP)
 - UCI Institute of Transportation Studies
 - Southern California ITE
 - Orange County Traffic Engineering Council
Thank you!!

Questions?