Real-Time Traffic Measurement from Single Loop Inductive Signatures

UCI-ITS-TS-WP-01-14

Serf Oh
Stephen G. Ritchie
Cheol Oh

Department of Civil and Environmental Engineering and
Institute of Transportation Studies
University of California, Irvine
serfo@uci.edu, sritchie@uci.edu, cheolo@uci.edu

December 2001
Institute of Transportation Studies
University of California, Irvine
Irvine, CA 92697-3600, U.S.A.
http://www.its.uci.edu
Real Time Traffic Measurement from Single Loop Inductive Signatures

Seri Oh
serio@uci.edu

Stephen G. Ritchie
ritchie@uci.edu

Cheol Oh
chenlo@uci.edu

Department of Civil and Environmental Engineering and
Institute of Transportation Studies
523 Social Science Tower
University of California
Irvine, CA 92697-3600
USA
Voice: (949) 824-5623
Fax: (949) 824-8385

Submitted for presentation and publication
at the 81st Annual meeting of the Transportation Research Board
Real Time Traffic Measurement from Single Loop Inductive Signatures

Seri Oh, Stephen G. Ritchie, and Cheol Oh

Department of Civil and Environmental Engineering and
Institute of Transportation Studies
2238 Social Sciences Tower
University of California
Irvine, CA 92697-3600
USA
Voice: (949) 824-5623
Fax: (949) 824-8385

ABSTRACT

Accurate traffic data acquisition is essential for effective traffic surveillance, which is the backbone of Advanced Transportation Management and Information Systems (ATMIS). Inductive loop detectors (ILDs) are still widely used for traffic data collection in US and many other countries. Three fundamental traffic parameters, speed, volume and occupancy, are obtainable via single or double (speed trap) ILDs. Real-time knowledge of such traffic parameters is typically required for use in ATMIS from a single loop detector station, which is the most commonly used. However, vehicle speeds cannot be obtained directly. Hence, the ability to estimate vehicle speeds accurately from single loop detectors is of considerable interest. In addition, operating agencies report that conventional loop detectors are unable to achieve volume count accuracies of more than 90-95%.

The main objective of this paper is to demonstrate the improved derivation of fundamental real-time traffic parameters such as speed, volume, occupancy, and vehicle class from single loop detectors and inductive signatures.
INTRODUCTION
Accurate traffic data acquisition is essential for effective traffic surveillance, which is the backbone of Advanced Transportation Management and Information Systems (ATMIS). Inductive loop detectors (ILDs) are still widely used for traffic data collection in US and many other countries. Three fundamental traffic parameters, speed, volume and occupancy, are obtainable via single or double (speed-cap) ILDs. Real-time knowledge of such traffic parameters is typically required for use in ATMIS from a single loop detector station, which is the most commonly used. However, vehicle speeds can not be obtained directly. Hence, the ability to estimate vehicle speeds accurately from single loop detectors is of considerable interest. In addition, operating agencies report that conventional loop detectors are unable to achieve volume count accuracies of more than 90-95%.

As pointed out by Gardner (1), the state of the art of traffic monitoring and surveillance systems can be divided into three areas: sensor technology, data recording and transfer, and data sampling and analysis. Recently, in the field of sensor technology, many devices have been proposed to obtain improved traffic data. These involve the development of radar detectors, video detectors, and automated vehicle identification (AVI) systems among them. However, many of these new sensors involve high initial costs with reliability that are yet to be proven.

Moreover, integration with existing sensors, in most cases ILDs, would be more desirable rather than implementing new technologies and disregarding existing investments. From this perspective, new ILD detector card technology which permits collection of vehicle inductive signatures is of great interest.

Accordingly, the main objective of this paper is to demonstrate the derivation of fundamental real-time traffic parameters, focusing particularly on improved vehicle speed estimation, from single loop detectors and inductive signatures. In this regard the paper extends the recent work of Sun and Ritchie (2). In addition to improved volume and occupancy estimation, the approach presented also real-time vehicle class information to be derived.

BACKGROUND
Vehicle Inductive Signatures
Detector cards used with conventional ILDs are usually bivalent in nature, where the detector card output is either “0” or “1” depending on vehicle presence. However, detector card technology has advanced to the degree where now the inductive change over the loop is obtainable due to the vehicle’s passage. Especially, the detector’s high scan rate enables to produce different level of inductance change. This inductance change produces a waveform or a so-called “vehicle signature”. Figure 1 and Figure 2 present examples of vehicle signatures for different vehicle types for the case of a single loop configuration. It is clear that high scan rate gives more accurate vehicle signature. But at the same time, the trade off between the scan rate and the manipulation of signature data was observed. In this study, detector scan rate was set at 7 milliseconds. In each case vertical axis is proportional to the change in inductance and the horizontal axis is time. Vehicle signatures are function of vehicle speed and vehicle type, and exhibit different features. Therefore, many features can be derived by exploiting these vehicle signatures directly or indirectly. Table 1 lists some available features from a vehicle signature; these features are illustrated in Figure 3. In the study feature vectors are divided into two categories; vehicle specific feature vectors and traffic specific feature vectors. The vehicle feature vectors refer to the characteristics of the vehicle itself. This includes parameters such as length, mass, and type. These parameters are used to predict the behavior of individual vehicles. Vehicle length is a good example for this category. These features are expected to be invariant, assuming that the same sensors are used with the same installation configuration and under the same driver’s behavior. On the other hand, traffic specific features are highly correlated with the traffic conditions such as speed and occupancy. These include features such as slow speed, which is an uncommon feature, represents the slope value at the point 0.5 of the normalized signature and is clearly described on Figure 3. In this study, the proposed real-time traffic measurement system includes a signature processing routine that identifies, and extracts feature vectors from regular and problematic signatures. The problematic signatures will be explained in detail in the next section.
Figure 1 Passenger Car Signature

Figure 2 Pickup Truck Signature

<table>
<thead>
<tr>
<th>Signature Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Specific Features</td>
<td></td>
</tr>
<tr>
<td>Maximum Magnitude</td>
<td>A</td>
</tr>
<tr>
<td>Magnetic Length</td>
<td>d + e</td>
</tr>
<tr>
<td>Shape Parameter</td>
<td>d / (d + e), related to signature symmetry and skewness</td>
</tr>
<tr>
<td>Signature Area</td>
<td>F</td>
</tr>
<tr>
<td>Traffic Specific Features</td>
<td></td>
</tr>
<tr>
<td>Slope Rate</td>
<td>c, slope at point "0.5"</td>
</tr>
<tr>
<td>Duration</td>
<td>b, same as vehicle occupancy</td>
</tr>
</tbody>
</table>
Figure 3 Signature Feature Vectors

Literature Review

Speed is one of the fundamental traffic variables and at the same time, it can be interpreted as an indicator of transportation system effectiveness. This is because travel time, which is an essential parameter of the transportation system, can be represented as the inverse of speed. It is well known that double ILDs in a speed trap can measure vehicle speeds. However, with the widespread use of single ILDs, a number of researchers have investigated speed estimation from single loops.

By using either a constant or a function to convert loop occupancy into density, the most commonly applied method to obtain speed from a single ILD is based on the relationship between fundamental traffic variables. This approach was first developed by Athol (3) and has been expanded by many researchers such as Mikhailik et al. (4), Courage et al. (5), Hall et al. (6), Bailey et al. (7), Costlow (8), Waggoner et al. (9) and Chernen et al. (10). Approaches that assume a constant vehicle effective length for estimating speed from single loop occupancies are known to produce poor estimates of speed when vehicles of different lengths sometimes are present in the traffic stream and when their proportions change over time. Other approaches to speed estimation from single loop include the use of crash catastrophe theory (11), statistical methods (12) and video analysis (13).

Recently, Sun and Ritchie (2) proposed a new and straightforward speed estimation technique from single ILD inductive signatures that was based on signal processing and linear regression with very promising initial results. The methodology presented in this paper extends the work of Sun and Ritchie (2) to develop an expanded and improved system for real-time traffic measurement from single ILDs.

METHODOLOGY & EXPERIMENTAL RESULTS

Using advanced loop detector card technology (high speed scanning detector cards that generate vehicle inductive signature), the proposed system aims to gather accurate and real time traffic measurements such as volume, occupancy, speed, and vehicle classification. In this paper, estimating vehicle speed is the principal focus. Volume and occupancy are directly derived from processing raw vehicle signatures whereas speed is estimated based on the vehicle signature feature vectors. Vehicle length is obtained based on vehicle speed. By combining vehicle length with existing vehicle signature features, vehicle classification is achieved. Figure 4 describes the overall parameter derivation relationship. Field data from a major four-way intersection in the City of Irvine, California is used for system development and performance testing. Details on the dataset can be found in Table 5. The data were
obtained either from single loops or double loops for several different days (for the double loop data only one loop was used).

![Vehicle Signature Diagram]

Figure 4 Traffic Measurements

<table>
<thead>
<tr>
<th>Table 2 Data Description</th>
<th>Double Loop Vehicles</th>
<th>Single Loop Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car</td>
<td>550</td>
<td>-</td>
</tr>
<tr>
<td>Sport Utility Car</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>Pickup Truck</td>
<td>190</td>
<td>12</td>
</tr>
<tr>
<td>Mini Van</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>Van</td>
<td>70</td>
<td>13</td>
</tr>
<tr>
<td>One Unit Truck</td>
<td>41</td>
<td>50</td>
</tr>
<tr>
<td>Trailer / Vehicle with Boat</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Mini Bus</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Bus</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Total Vehicles</td>
<td>1,222</td>
<td>128</td>
</tr>
</tbody>
</table>
Speed

The study by Sun and Ritchie (2) resulted in a single linear regression equation between vehicle speed and signature skew rate based on vehicle signatures from single ILDs. For the data used, average speed errors only about 7% were obtained from the regression equation. However, when the equation was applied without re-estimation to the data in this study, the results for the uncalibrated case were obtained when the regression parameters were re-estimated. The results for the calibrated case in Table 6 were obtained. Interestingly, the results for vehicles with magnetic length less than 6 m (mostly passenger cars, but including mini vans, pickup trucks and SUVs) were very good. However, the average speed estimation errors for longer vehicles were quite large. Analysis revealed that the data used by Sun and Ritchie comprised about 94% of vehicles with magnetic length less than 6m, explaining the good fit for shorter vehicles and larger errors for longer vehicles. This finding led to a search for an improved approach to estimating single loop vehicle speed. The approach reported in this paper relies on categorizing vehicles by type (prior to deriving their magnetic length) and estimating separate speed regression equations for each vehicle category.

<table>
<thead>
<tr>
<th>Length (ML) Range</th>
<th>Average % Error</th>
<th>Calibrated case</th>
<th>Uncalibrated case</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML ≤ 6 m</td>
<td></td>
<td>4.19</td>
<td>7.94</td>
</tr>
<tr>
<td>6 < ML ≤ 9 m</td>
<td></td>
<td>33.49</td>
<td>30.36</td>
</tr>
<tr>
<td>9 < ML ≤ 15 m</td>
<td></td>
<td>33.28</td>
<td>25.36</td>
</tr>
<tr>
<td>15 m ≤ ML</td>
<td></td>
<td>16.56</td>
<td>18.38</td>
</tr>
</tbody>
</table>

Features for Speed Estimation

Figure 6 shows signatures for the same vehicle (a passenger car) but at different speeds. It is easy to observe signature differences arising from the vehicle’s speed. Duration or occupancy has an inverse proportional relationship with speed while skew rate shows a proportional correspondence with speed. Therefore, two traffic specific features, duration and skew rate were chosen as input variables for new speed estimation models.
Figure 7 supports the basic concept of the vehicle grouping module, which is discussed in the next section. The two signatures show the same duration with similar but different speeds. Even though the track signature has the same duration as other passenger car signatures, the speeds are somewhat different, while the vehicle magnetic lengths are quite different. Therefore, the vehicle grouping module minimizes speed estimation error originating from incorrect vehicle length assumptions.

Figure 7 Same duration from different vehicle, and at different speed

Speed Estimation Model

Vehicle Grouping Module

According to Table 6, it is clear that the percentage error increases significantly after a vehicle length of 6 m. This suggests that different speed estimation models should be applied and, prior to this, it is necessary to allocate vehicles to different categories. Six large vehicle classes exist according to Federal Highway Administration (FHWA) vehicle categorizations: passenger cars, motor cycles, buses, other 2-axle-4-tire vehicles, single-unit 2-axle 6-tire or more trucks, and combination trucks. In this case, other 2-axle 4-tire vehicles include vans, pickup trucks, and sport utility vehicles. Passenger cars and some of the 2-axle-4-tire vehicles show magnetic vehicle lengths less than 6 m. Therefore, based on the FHWA vehicle categorization and extensive data analysis on vehicle magnetic length, four predefined vehicle groups were used. It should be noted that vehicle magnetic lengths can only be derived after speeds are determined. Table 7 summarizes four suggested vehicle groups and the corresponding vehicle types as well as the FHWA vehicle category.

Table 4 Vehicle Grouping

<table>
<thead>
<tr>
<th>Vehicle Group</th>
<th>Vehicle Type</th>
<th>FHWA Vehicle Category</th>
<th>Magnetic Length (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Passenger car, mini van, pickup truck, SUV</td>
<td>Passenger car, other 2-axle 4-tire vehicles</td>
<td>ML <= 6</td>
</tr>
<tr>
<td>Group 2</td>
<td>Small bus, van, pickup truck</td>
<td>Other 2-axle 4-tire vehicles</td>
<td>6 < ML <= 9</td>
</tr>
<tr>
<td>Group 3</td>
<td>Big bus, one unit truck</td>
<td>Bus, single unit 2-axle 6-tire or more trucks</td>
<td>9 < ML <= 15</td>
</tr>
<tr>
<td>Group 4</td>
<td>Trailbar, vehicle with boats</td>
<td>Combination trucks</td>
<td>ML > 15</td>
</tr>
</tbody>
</table>
For the purpose of real-time vehicle grouping, a Probabilistic Neural Network (PNN) was applied. The PNN is a neural network implementation of the well-established multivariate Bayesian classifier using Parzen estimators to construct the probability density functions (PDFs) of the different classes (14). Application of the PNN is illustrated in Figure 8.

![Figure 8 Overall Procedure](image)

Results

The PNN was trained on a data set of 390 vehicles, and trained with a data set of 185 vehicles. The test results are presented in Table 9. Vehicle group 1 shows the highest matching rate (90%) as expected because it had the biggest training dataset. It is also interesting to note the high classification rate (89%) for vehicle group 4 despite its small training sample size of 50 vehicles. By examining the wrongly classified vehicles, it was found that their corresponding magnetic lengths were close to the threshold values of neighboring vehicle groups. For example, in the case of vehicle group 2, six vehicles were misclassified as belonging to vehicle group 3. Five out of these six vehicles show values over 9.2 as for the vehicle magnetic length. This is a reasonable result considering the basic criterion in partitioning vehicle groups.
Table 5: 2NN Vehicle Grouping Result

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Total</th>
<th>Classification Rate(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>45</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>Group 2</td>
<td>4</td>
<td>39</td>
<td>7</td>
<td>0</td>
<td>50</td>
<td>78</td>
</tr>
<tr>
<td>Group 3</td>
<td>0</td>
<td>6</td>
<td>43</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Group 4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>41</td>
<td>45</td>
<td>89</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>44</td>
<td>54</td>
<td>42</td>
<td>195</td>
<td>85.8</td>
</tr>
</tbody>
</table>

Statistical Model

Figure 9 illustrates the correlation between duration and speed for different vehicle groups. It can be observed that the two variables show a log linear correlation. Therefore, rather than using duration directly, the speed estimation model uses log transformed duration. A linear relationship between speed and slew rate was established by Song et al (2). Accordingly, the following linear regression model was proposed for the speed estimation models for individual vehicles in each vehicle group.

\[S_{\text{est},i} = a + b \cdot s_r + c \cdot \ln(d_i) \]

where

- \(S_{\text{est},i} \): estimated speed of individual vehicle \(i \) (m/s)
- \(s_r \): slew rate of individual vehicle \(i \)
- \(d_i \): duration of individual vehicle \(i \), milliseconds
- \(a, b, c \): regression parameters

![Figure 9: Speed and Duration](image-url)
Table 11 summarizes the regression results for the proposed statistical speed estimation models for each vehicle group. It should be remembered that errors mentioned in this section solely relate to the regression models. The overall procedure evaluation including the PNN vehicle grouping models is presented in the next section. All the parameters were significant by examining the t-statistics for all models. It is interesting to observe that the t-statistic value decreases as vehicle magnetic length increases. The average error in estimated speeds ranged between 5 and 10%.

Table 6 Statistical Module Summary

<table>
<thead>
<tr>
<th>Vehicle Group</th>
<th>Sample Number</th>
<th>Calibration Model</th>
<th>Model R²</th>
<th>Testing Sample Number</th>
<th>Average Error (m/s)</th>
<th>Average Speed Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>800</td>
<td>91.672 + 436.540SR – 13.698ln(DUR) (39.393) (13.287) (-36.450)</td>
<td>0.901</td>
<td>200</td>
<td>1.081</td>
<td>5.03</td>
</tr>
<tr>
<td>Group 2</td>
<td>65</td>
<td>75.311 + 534.741SR – 10.228ln(DUR) (10.874) (4.759) (-10.228)</td>
<td>0.864</td>
<td>61</td>
<td>1.746</td>
<td>9.87</td>
</tr>
<tr>
<td>Group 3</td>
<td>35</td>
<td>85.146 + 43.342SR – 10.988ln(DUR) (9.191) (3.526) (-8.724)</td>
<td>0.895</td>
<td>16</td>
<td>0.976</td>
<td>6.89</td>
</tr>
<tr>
<td>Group 4</td>
<td>45</td>
<td>136.092 – 24.259SR – 16.955ln(DUR) (5.261) (-0.094) (-4.975)</td>
<td>0.784</td>
<td>45</td>
<td>1.245</td>
<td>7.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>133.824 – 16.658*ln(DUR) (14.199) (-12.721)</td>
<td>0.784</td>
<td>45</td>
<td>1.236</td>
<td>7.11</td>
</tr>
</tbody>
</table>

Table 7 represents the overall results from combining the PNN and regression equation for speed estimation. The results offer a clear improvement over those of Sues and Ritchie (2) with average speed estimation errors of between about 4-15% depending on the vehicle group. The overall average error was less than 10%, which is a very encouraging result. Figure 10 presents a scatter diagram of the estimated and actual vehicle speeds. Clearly, most speeds are estimated quite well.

![Figure 10 Observed Speed vs Estimated Speed](image-url)
Vehicle Classification

Vehicle classification is the process of vehicle type recognition based on given vehicle characteristics. Accurate vehicle classification has many important applications in transportation. One good example is road maintenance, which is strongly related to the monitoring of heavy vehicles. Incorporating information about vehicle classification in the analysis of environmental impact is also highly desirable. Improvement of highway safety can also benefit from vehicle classification information, knowing that the severity of traffic accidents is highly correlated with vehicle types. To summarize, an area-wide assessment of the mix of vehicle classes in traffic is essential for more reliable and accurate traffic analysis and modeling. Therefore, since the seventies, a lot of research has been conducted in this field and the recent new detector technology has contributed to the enhancement of vehicle classification performance.

In this section, three different neural network (NN) architectures are presented for vehicle classification: backpropagation neural network (BNN), probabilistic neural network (PNN), and self-organizing map (SOM). While the PNN described in the previous section performed well in allocating vehicles to one of four groups of classes, the neural nets described in this section utilize seven different vehicle types for classification purposes. Including vehicle length, the most important parameter for vehicle classification, four vehicle-specific feature vectors were used as input. Figure 12 shows the overall architecture of the BNN and SOM models. The same dataset for speed estimation was used for NN performance evaluation. The vehicle classification results are presented in Table 13.

![Figure 12: Neural Network Architecture](image-url)
Table 8 Vehicle Classification Results

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Training Dataset</th>
<th>Testing Dataset</th>
<th>Correct Classification (Test Dataset %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car, minivan</td>
<td>100</td>
<td>70</td>
<td>88.6</td>
</tr>
<tr>
<td>Sport Utility Car</td>
<td>80</td>
<td>70</td>
<td>74.3</td>
</tr>
<tr>
<td>Van, minibus</td>
<td>62</td>
<td>40</td>
<td>75.0</td>
</tr>
<tr>
<td>Pickup Truck</td>
<td>100</td>
<td>70</td>
<td>75.7</td>
</tr>
<tr>
<td>One Unit Truck</td>
<td>50</td>
<td>41</td>
<td>85.4</td>
</tr>
<tr>
<td>Trailer / Vehicle with Boat</td>
<td>50</td>
<td>45</td>
<td>100.0</td>
</tr>
<tr>
<td>Bus</td>
<td>6</td>
<td>4</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>448</td>
<td>340</td>
<td>82.6</td>
</tr>
</tbody>
</table>

Volume / Occupancy

In most cases, ILD output is acceptable and reasonable under light traffic conditions unless the ILD is defective. However, with bivalent detector cards tailgating vehicles may be counted as one vehicle, and vehicles with trailers as two vehicles. This results in an incorrect volume count. Figure 13 and Figure 14 show the signatures obtained for tailgating vehicles and a vehicle towing a boat, respectively. These signatures were obtained using high speed scanning detector cards. We have developed software to preprocess all signatures and to identify "irregular" signatures such as these. As a result, the accuracy of volume counts and occupancies can be significantly increased.

In Table 14, the counting result and accuracy are presented for a sample dataset. For this analysis, signature data from an arterial in the City of Irvine, CA was used. Motor cycles were not included in the volume count but can always be detected by changing the sensitivity parameters of the detector card. The true count is based on the manual count observed from the video ground truth while system count represents the value obtained after processing the vehicle signatures through the proposed system. In this case, the proposed system was able to address three abnormal vehicle signatures and achieve a volume count accuracy of 99.3%.

Table 9 Volume Count Results

<table>
<thead>
<tr>
<th>True Count</th>
<th>Detector Count</th>
<th>System Count</th>
<th>System Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>594</td>
<td>597</td>
<td>99.3 %</td>
</tr>
</tbody>
</table>
CONCLUSION

This paper has presented a new method for obtaining real-time traffic measurements by using vehicle signatures that are available by integrating existing ILLs with advanced loop detector cards. This approach suggests many advantages. First, by using the current loop infrastructure, it is cost-effective. In addition, unlike other sensors that require a unique vehicle identity, like AVL, this system is non-intrusive and anonymous. Also, advanced sensor technology enables researchers to gather more accurate and reliable traffic data that contributes to more efficient traffic surveillance and control.

In particular, this paper has demonstrated a new method of individual vehicle speed estimation from single loop detectors. The proposed model estimates individual vehicle speeds in two stages: using vehicle grouping, and speed estimation by group. The strength of this study lies in the first stage where the PNN vehicle grouping is accomplished based on the vehicle signature features. Vehicle length influences on speed estimation are considered in this stage as well.
In addition to estimating the individual vehicle speed distribution, the proposed model enables the
derivation of useful speed statistics for a specific analysis period. Speed variance, which is a good indicator of
traffic flow stability, is also available according to the presented estimation method. Moreover, vehicle
classification information yields the composition of vehicle types on the road. This information is an essential
requirement for a more accurate analysis of road maintenance and air pollution.

ACKNOWLEDGEMENT

This work was performed as part of the California PATH Program of the University of California, in cooperation
with the State of California Business, Transportation and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration. The contents of this report reflect
the views of the authors and are responsible for the facts and the accuracy of the data presented herein. The
contents do not necessarily reflect the official views or policies of the State of California. This report does not
constitute a standard, specification, or regulation. The authors gratefully acknowledge the assistance of Richard
Nelson, City of Irvine, and Joe Palen, California Department of Transportation, in conducting this research.

REFERENCES

1. Garber, M.P. Highway Traffic Monitoring. Transportation Research Record, Transportation in the New
Millennium, 2000, pp 5.
Record 388, HCR, National Research Council, Washington D.C., 1972, pp 73 – 83
5. Rapoport, I. V. Braver, C. S., and Ross, D. W. Operating Parameters for Main–Line Semi-Trucks in Freeway
Surveillance Systems. Highway Research Record 600, HCR, National Research Council, Washington
D.C., 1976, pp 19 – 28
6. Hall, F. E., and Persaud, B. N., Evaluation of Speed Estimates Made with Single – Detector Data from Freeway
Traffic Management Systems Transportation Research Record 1212, 1989, pp 9 – 16
7. Dailey, D. J., Hanekum, M. P., and Nihan, N. L. Improved Estimation of Travel from Real Time Inductive
Loop Sensors. Washington State Department of Transportation, Washington State Transportation Center,
University of Washington. 1993
8. Goffman, B. A New Methodology for Smoothing Freeway Loop Detector Data: Introducing to Digital
Filtering. Transportation Research Record 1554, 1996, pp 142 – 152
research Record 1727,2000, pp 120 – 126
Detectors. Transportation Research Record 1379, 2000, pp 112 – 120
11. Pushkar, A., Hall, P. L., and Acha-Buza, J. A. Estimation of Speeds from Single Loop Freeway Flow and
Occupancy Data Using Cup Catastrophe Theory Model. Transportation Research Record 1457,1994, pp 149 –
157
Transportation Research Record 1719, 2000, pp 27 – 32
Fuzzy Logic and Neural Network Handbook, 1996