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Abstract

In this paper, we present evidence of strong relationships between traffic flow conditions and the likelihood of traffic accidents (crashes),
by type of crash. Traffic flow variables are measured using standard monitoring devices such as single inductive loop detectors. The key
traffic flow elements that affect safety are found to be mean volume and median speed, and temporal variations in volume and speed, where
variations need to be distinguished by freeway lane. We demonstrate how these relationships can form the basis for a tool that monitors
the real-time safety level of traffic flow on an urban freeway. Such a safety performance monitoring tool can also be used in cost-benefit
evaluations of projects aimed at mitigating congestion, by comparing the levels of safety of traffic flows patterns before and after project
implementation.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A common aim of transportation management and con-
trol projects on urban freeways is to increase productivity
by reducing congestion. Reducing congestion ostensibly
leads to reductions in travel time, vehicle emissions and
fuel usage, and improved travel time reliability. Tools have
been recently implemented to measure the real-time per-
formance of any instrumented segment of freeway in terms
of throughput: travel time per vehicle, average speed or
total delay (Chen et al., 2001; Choe et al., 2002; Varaiya,
2001). The inputs to these tools are typically total flows and
mean speeds computed from volume and occupancy data
from single inductive loop detectors, typically for intervals
of 30 s or more. Increasingly, such single loop detectors
are distributed throughout the freeway system. Data from
more accurate but less ubiquitous sensors, such as double
loops and video cameras, is sometimes used to adjust or
calibrate single loop measurements, but the primary source
of real-time surveillance data for traffic management is
likely to remain the single loop detector for the foreseeable
future.
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Reduced congestion and smoothed traffic flow are also
likely to improve safety, as well as reduce psychological
stress on drivers. Concentrating on the safety issue, our ob-
jective in this paper is to demonstrate that researchers are
beginning to understand the relationship between safety and
improved traffic flow. Recent developments indicate that the
time is right to refine and implement analytical tools that
can be used in real-time monitoring of the safety level of
the traffic flow on any instrumented segment of freeway. As
opposed to tools that measure freeway performance in terms
of throughput or travel time, we found that the key elements
of traffic flow affecting safety are not only mean volume and
speed, but also variations in volume and speed. We further
determined that it is important to capture variations in speed
and flows separately across freeway lanes, and that such in-
formation is useful in differentiating types of crashes.

In addition to real-time monitoring of safety levels, a
safety performance tool can be used in project evaluation
and planning. The safety aspects of costs and benefits can be
assessed by comparing the levels of safety estimated by the
tool for traffic flows before and after implementation of a
treatment, such as a component of an intelligent transporta-
tion system (ITS) or infrastructure project. Such a tool can
also be used in planning by applying it in forecasting the
levels of safety for simulated traffic flows. In the remain-
der of this paper, we present some evidence that supports
relationships between traffic flow and likelihood of traffic
accidents (crashes).
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2. Previous studies

Studies of relationships between crashes and traffic flow
can be divided into two types: (a) aggregate studies, in which
units of analysis represent counts of crashes or crash rates
for specific time periods (typically months or years) and for
specific spaces (specific roads or networks), and traffic flow
is represented by parameters of the statistical distributions
of traffic flow for similar time and space, and (b) disaggre-
gate analysis, in which the units of analysis are the crashes
themselves and traffic flow is represented by parameters of
the traffic flow at the time and place of each crash. Disag-
gregate studies are relatively new, and are made possible by
the proliferation of data being collected in support of intel-
ligent transportation systems developments. Transportation
management centers routinely archive traffic flow data from
sensor devices such as inductive loop detectors and these
data can, in principle, be matched to the times and places of
crashes, as described inSection 4of this paper.

Analyses based on aggregations of crashes are prone to
statistical problems (Mensah and Hauer, 1998; Davis, 2002).
Ecological fallacy arises whenever an observed statistical re-
lationship between aggregated variables is falsely attributed
to the units over which they were aggregated (Robinson,
1950). Methods for identifying and correcting for biases due
to ecological fallacy are well developed in geography and
regional science (e.g.,Holt et al., 1996), but such methods
are rarely applied in traffic safety research. Disaggregate
analyses in principle avoid problems of ecological fallacy.
Nevertheless, aggregate studies first provided compelling
evidence that crashes are not simply a linear function of
traffic volume, and several aggregate studies underpin the
research reported here by having identified relationships
between different types of crash rates and the three main
traffic flow parameters: traffic volume, speed, and density.

Aggregate studies can be subdivided into macroscopic
and microscopic studies (Persaud and Dzbik, 1992). Macro-
scopic studies typically use crash data in terms of vehicle
miles of travel (VMT) accumulated over long time peri-
ods, such as a year. Microscopic aggregate studies, which
have also been referred to as disaggregate studies (Sullivan,
1990), typically use data based on average hourly observa-
tions of crash rates and traffic flow, allowing comparisons
to be made, for example, between congested and free-flow
traffic conditions.Jovanis and Chang (1986)reflect on the
scales of the aggregations over time and space in comparing
the results of some of the early aggregate studies.

Ceder and Livneh (1982)andMartin (2002)observed that
U-shaped curves depicting crash rates as a function of hourly
traffic flow for free-flow conditions can result from the com-
bination of two functional forms: (a) single-vehicle crashes
decreasing at a decreasing rate as a function of flow, and
(b) multiple-vehicle crashes increasing with flow, usually at
an increasing rate. These curves were also observed to vary
for day and night and for weekday and weekend.Garber
and Subramanyan (2001)observed that peak accident rates

do not occur at peak flow, but rather, crashes tend to in-
crease with increasing density, reaching a maximum before
the optimal density at which flow is at capacity.Garber and
Ehrhart (2000)observed that crash rates involve an interac-
tion of variation in speed and flow, with crash rates being an
increasing function of the standard deviation of speed for all
levels of flow.Aljanahi et al. (1999)andGarber and Gadiraju
(1990)also found that crash rates were positively related to
both mean speed and variation in speed.Baruya and Finch
(1994)found that crash levels were an increasing function of
the coefficient of variation of speed. Finally,Ceder (1982),
Sullivan (1990), andPersaud and Dzbik (1992)each inves-
tigated how accident rates are different for free-flow versus
congested conditions. Each study concluded that crash rates
are higher under congested conditions.

Disaggregate analyses have been reported byOh et al.
(2001, 2001), and Lee et al. (2002, 2003), in addition to
the research presented here and inGolob and Recker (2003,
2004). The objective in each of these studies was to identify
freeway traffic flow conditions that are precursors of cer-
tain types of crashes. Using data for a freeway segment in
the San Francisco Bay Area of California,Oh et al. (2001)
developed probability density functions for crash potential
based on the standard deviation of speed.Lee et al. (2002,
2003)focused on coefficients of variation of speeds and traf-
fic densities compared across different freeway lanes, using
data for an urban freeway in Toronto. In contrast, our ap-
proach is to develop a classification scheme by which traffic
flow conditions on an urban freeway can be classified into
mutually exclusive clusters that differ as much as possible
in terms of likelihood of crash by type of crash. By using
lane-by-lane traffic flow data measured on short time inter-
vals (e.g., 20 or 30 s), disaggregate analysis holds the poten-
tial of being able to relate expected numbers of crashes by
type of crash to traffic flow in terms of central tendencies
and variations in volumes, densities, and speed, potentially
differentiated across freeway lanes.

3. Overview of the FITS (Flow Impacts on Traffic
Safety) prototype

In the remainder of this paper we will describe how a
real-time safety monitoring tool might emerge based on
recent results generated through testing of a prototype soft-
ware tool called FITS (Flow Impacts on Traffic Safety)
(Golob et al., in press). FITS uses a data stream of 30 s ob-
servations from single inductance loop detectors to forecast
the types of crashes that are most likely to occur for the flow
conditions being monitored. The FITS algorithms, in their
present form, are based on analyses of crash characteristics
of more than 1000 crashes on six major freeways in Or-
ange County, California in 1998 as a function of pre-crash
traffic flow conditions. Orange County is an urban area of
about three million population located between Los Angeles
and San Diego. Pre-crash conditions were computed using
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27.5 min of data from the closest loop station. Through
sensitivity analysis, it was determined that approximately
30 min of traffic flow data prior to the reported time of the
crash were needed to establish patterns in terms of central
tendencies and variations of the variables described in the
next section. The 2.5 min period immediately preceding the
reported time was later discarded, because accident times
were found to be typically rounded off to the nearest 5 min,
resulting in a 27.5 min period for establishing pre-crash
traffic conditions. The median distance from the crash site
to the closest loop station was 0.12 miles.

FITS is based on analyses that capture statistical relation-
ships between traffic flow, as measured by one of the sim-
plest and most ubiquitous monitoring instruments, a string of
single inductive loops buried in all lanes at a single point on
a freeway, and crash characteristics, in terms readily avail-
able measures of overall severity and the type and location
of the collisions. No reported crashes are removed from the
samples. If crashes due to equipment failures or some other
factors thought to be peripheral to driver behavior are inde-
pendent of traffic conditions, these should not show up in
the results. However, it might be possible that many factors
not usually attributed to the contribution to crash likelihood
vary by traffic conditions, due, for example, to differences
in reaction times, wear and tear on vehicles, and stability
of vehicle loads. Also, certain environmental factors (e.g.,
sight distances and locations of exits and entrances), are ex-
pected to be reflected in the detailed patterns of traffic flow.
The exception involves daylight versus nighttime and dry
versus wet conditions, which are handled through separate
analyses. Investigations of whether or not relations between
crash typology and traffic flow can be improved by adding
detailed data on environmental conditions are in the realm
of future research.

4. Data

FITS was calibrated based on crash data for 1998 drawn
from the Traffic Accident Surveillance and Analysis Sys-
tem (TASAS) database (Caltrans, 1993), which covers all
police-reported cases on the California State Highway Sys-
tem. Crash typology is defined according to three primary
crash characteristics: (1) crash type, based on the type of
collision (rear end, sideswipe, or hit object), the number of
vehicles involved, and the movement of these vehicles prior
to the crash, (2) the crash location, based on the location of
the primary collision (e.g., left lane, interior lanes, right lane,
right shoulder area, off-road beyond right shoulder area),
and (3) crash severity, in terms of injuries and fatalities per
vehicle. These variables are described inTable 1, together
with their breakdown for the data on which the current ver-
sion of the tool is calibrated.

To relate these characteristics to traffic flow conditions,
FITS uses raw detector data that provide information on two
variables: count (flow) and occupancy for each 30 s inter-

Table 1
Crash characteristic with breakdown of sample of 1192 Crashes in 1998
on Orange County freeways

Crash characteristic Percent

Crash type
Single-vehicle hit object or overturn 14.2
Multiple-vehicle hit object or overturn 5.9
Two-vehicle weaving crasha 19.3
Three-or-more-vehicle weaving crasha 5.5
Two-vehicle straight-on rear end 33.8
Three-or-more-vehicle rear end 21.3

Crash location
Off-road, driver’s left 13.8
Left lane 25.8
Interior lane(s) 32.7
Right lane 19.3
Off-road, driver’s right 8.3

Severity
Property damage only 71.9
Injury or fatality 28.1

a Sideswipe or rear end crash involving lane change or other turning
maneuver.

val. Although these two variables can be used (under very
restrictive assumptions of uniform speed and average vehi-
cle length, and taking into account the physical installation
of each loop) to infer estimates of point speeds, we avoid
making any such assumptions, and use only these direct
measurements and their ratios in the analyses. However, in
interpreting the results, where such relative terms as means
and variances are employed, we routinely assume that the
ratio flow/occupancy is proportional to and a surrogate for
mean speed.

Four blocks of three variables (one variable for each of
the three lanes: left, interior, and right) were found to be re-
lated to crash typology. The variables are listed inTable 2.
The first block comprises the median of the ratio of vol-
ume to occupancy for each of the three lanes, and measures
the central tendency of occupancy (density), an approximate
proportional indicator of space mean speed. Median, rather
than mean, is used in order to avoid the influence of outlying
observations that can be due to failure of the loop detectors
or unusual vehicle mixes. The second block comprises the
difference of the 90th percentile and 50th percentile in the
ratio of volume to occupancy (density) for each lane, and
represents the temporal variation of this ratio. Here, we use
the percentile differences because we wish to minimize the
influence of outlying observations.

The third block of traffic flow variables comprises the
mean volumes for all three lanes taken over the entire
27.5 min period preceding the accident. Volume alone is not
as sensitive to outliers as the ratio of volume to occupancy
is, so mean, rather than median, is used as a measure of
central tendency. (4) Finally, the fourth block is composed
of the standard deviations of the 30 s volumes for all three
lanes as a measure of variation in volume over the 27.5 min
period.
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Table 2
Traffic flow variables

Block 1: Central tendency of speed Median volume/occupancy—left lane
Median volume/occupancy—interior lane
Median volume/occupancy—right lane

Block 2: Variation in speed Difference between 90th and 50th percentiles of volume/occupancy—left lane
Difference between 90th and 50th percentiles of volume/occupancy—interior lane
Difference between 90th and 50th percentiles of volume/occupancy—right lane

Block 3: Central tendency of volume Mean volume—left lane
Mean volume—interior lane
Mean volume—right lane

Block 4: Variation in volume Standard deviation of volume—left lane
Standard deviation of volume—interior lane
Standard deviation of volume—right lane

Table 3
Loop detector variables used to as input to the FITS tool

Specific traffic flow variable Flow factor represented

Median volume/occupancy interior lane Central tendency of speed—all lanes
90th% tile–50th% tile of volume/occupancy interior lane Variation in speed—all lanes but right
90th% tile–50th% tile of volume/occupancy right lane Variation in speed—right lane
Mean volume left lane Central tendency of flow—all lanes
Standard deviation of volume left lane Variation in flow—all lanes but right
Standard deviation of volume right lane Variation in flow—right lane

In order to reduce any effects of multicollinearity among
the traffic flow measures (particularly among the three vari-
ables in each of the four blocks), principal components anal-
ysis was applied to extract a sufficient number of factors
to identify independent “composite” traffic flow variables
while simultaneously discarding as little of the information
in the original variables as possible. A reduction from 12
original variables to 6 factors accounted resulted in a loss of
only about 13% of the variance in the original twelve vari-
ables. One variable, highly correlated with the factor, was
then selected to represent each of the six factors and used
as input to FITS. These six variables are listed inTable 3,
together with the factor that they represent. The average cor-
relation between each factor and its representative variable
is 0.899.

5. Determining traffic flow regimes according to
differences in crash typology

5.1. Methodology

Calibration of FITS using the limited 1998 data was based
upon application of a series of multivariate statistical meth-
ods that determine optimal patterns between crash rates by
type of crash and traffic flow characteristics (Golob and
Recker, 2004). Two of these methods used are well known:
(a) principal components analysis, the most common form
of factor analysis, and (b) cluster analysis. Principal compo-
nents analysis was used to eliminate problems with redun-

dancy among traffic flow variables by reducing the dataset
to a smaller number of variables with minimum loss of
information. Cluster analysis is a method of grouping ob-
servations based on similar data structure. In the calibra-
tion process, cluster analysis was used to find homogenous
groups of traffic flow conditions, which are called “traffic
flow regimes.”

A recurring objective in cluster analysis is to determine
the best number of “natural” clusters. In the calibration, we
used a unique method for finding the optimal number of
clusters by comparing how well each clustering solution for
traffic flow regimes explains crash typology. To measure the
strengths of the relationships between different clustering
solutions and crash characteristics, we employed a third type
of multivariate analysis: nonlinear (nonparametric) canoni-
cal correlation analysis (NLCCA).

Because it is not commonly used in transportation re-
search, NLCCA needs some explanation. Conventional lin-
ear canonical correlation analysis (CCA) can be viewed as an
expansion of regression analysis to more than one dependent
variable; there are two sets of variables, and the objective is
to find a linear combination of the variables in each set so that
the correlation between the linear combinations is as high
as possible. The linear combinations are defined by optimal
variable weights. Depending on the number of variables in
each set and their scale types, further linear combinations
(canonical variates, similar to principal components in factor
analysis) can be found that have maximum correlations sub-
ject to the conditions that all canonical variates are mutually
independent. Nonparametric, or nonlinear CCA is designed
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for problems with variable sets that contain categorical or
ordinal (nonlinear, or nonparametric) variables. The linear
combinations can be defined only when there is a metric to
quantify the categories of each nonlinear variable. NLCCA
simultaneously determines both: (1) optimal re-scaling of
the categories of all categorical and ordinal variables and
(2) component loadings (variable weights), such that the lin-
ear combination of the weighted re-scaled variables in one
set has the maximum possible correlation with the linear
combination of weighted re-scaled variables in the second
set. The NLCCA method we use is based on the alternating
least squares (ALS) algorithm, which is described in detail
in De Leeuw (1985), Gifi (1990), Michailidis and de Leeuw
(1998), van der Burg (1988), van Buren and Heiser (1989)
andvan der Boon, 1996). In ALS, both the variable weights
and optimal category scores are determined by minimizing a
meet-loss function derived from lattice theory. The solution
is a particular kind of singular decomposition (eigenvalue)
problem (Israëls, 1987).

In our applications of NLCCA, there are two sets of vari-
ables: a single categorical variable representing the results of
each clustering on one side, and the three categorical crash
characteristics ofTable 1on the other side. Separate analyses
were conducted for each number of clusters, ranging from
four to eighteen clusters. Based on results that demonstrated
how safety patterns were affected by weather and lighting
conditions (Golob and Recker, 2003), these analyses were
repeated for three different environmental segments: (1) day-
light and dusk–dawn conditions on dry roads, (2) nighttime
conditions on dry roads, and (3) wet roads under all light-
ing conditions. Results for all three environmental segments
are documented inGolob et al. (2002). Due to space limita-
tions, we report only on results for the segment accounting
for the most traffic: daylight and dusk–dawn conditions on
dry roads. A detailed description of the NLCCA solution for
this environmental segment are given inGolob and Recker
(2004). In the remainder of this paper we focus on inter-
preting the relations between traffic flow and crash variables
implied by the clustering results.

Fig. 1. Key to radar diagram used to describe traffic flow regimes in terms of centroid locations for six traffic flow variables.

5.2. Results for daylight and dry road conditions

Using 1998 data, cluster analyses were performed in the
space of the six principal traffic flow variables inTable 3
in order to establish relatively homogenous traffic flow
regimes. The objective is to determine the best grouping
of observations into a specified number of clusters, such
that the pooled within groups variance is as small as possi-
ble compared to the between group variance given by the
distances between the cluster centers. The criteria used to
select the optimal number of clusters involved how well
each of the clustering explained differences in crash typol-
ogy, as determined by the performance of each clustering
scheme using NLCCA. For prevailing traffic conditions for
crashes on dry roads during daylight in 1998, we found that
we needed eight clusters of traffic flow conditions, which
we called “Regimes.” The eight traffic flow regimes can be
defined based on the location of their cluster centers in the
six-dimensional space of the traffic flow variables.

The eight traffic flow regimes can be visually compared
using radar diagrams that display all dimensions simultane-
ously. The dimensions are standardized (origin set at system
mean, and scale in standard deviation units) for easy com-
parison among the dimensions.Fig. 1 is a key to the radar
diagrams. Using compass orientation, mean speed is mea-
sured on the north axis; mean flow is measured on the op-
posing south axis; speed variances are on the two east axes;
and flow variances are on the two west axes. Variations on
the right lane are measured on the opposing northwest and
southeast axes; and variations on all the other lanes are mea-
sured on the opposing southeast and northeast axes.

The eight dry-daylight regimes are graphed inFig. 2a and
b. They are numbered in order of increasing demand for
road space, as described in the next section.

5.3. Regimes described in terms of a speed–flow curve

It is instructive to plot the eight regime centroids in the
space of just two of the six variables: mean speed and mean
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flow (Fig. 3). (As stated previously, for purposes of dis-
cussion, we assume that flow/occupancy is a surrogate for
speed.) These centroids trace a speed–flow curve that is a
familiar concept in traffic engineering (Roess et al., 1998).
The curve has three distinct branches: (1) a top nearly hori-
zontal convex segment, generally known as “free flow,” (2)
a vertical segment near maximum observable flow, known
as “queue discharge,” and (3) a bottom segment known as
“congested flow” or “within the queue” (Hall et al., 1992).
The shape traced by our regimes is similar to that found in
many empirical studies (Pushkar et al., 1994; Schoen et al.,
1995). Conceptually, as demand for road space increases,
you move clockwise through the curve. The regimes are
numbered in this manner.

On the free flow segment, traced by the first four regimes,
speed at first increases with demand. One plausible (al-
beit unsubstantiated) explanation for this observation may
be that, as individual vehicles become less exposed, drivers
feel that they are less vulnerable to enforcement of speed
limits, anecdotally, a common perception among southern
California’s commuters. Speed then decreases with demand
in the free flow branch as driver behavior begins to be influ-
enced by flow density. On the congested segment of the im-

Fig. 2. (a) Radar diagrams of traffic flow regimes for daylight and dry road conditions (Regimes 1–4). (b) Radar diagrams of traffic flow regimes for
daylight and dry road conditions (Regimes 5–8).

plied speed–flow curve traced by the remaining four regimes,
speeds decrease with decreasing flows as demand increases.

By superimposing the six-dimensional plots of the eight
traffic flow regimes in the space of speed–flow, we can see
that each of the regimes is quite different in terms of the four
remaining dimensions (Fig. 4). Beginning with the lowest
level of demand, which can occur either at off-peak times or
at any time downstream of a bottleneck, Regime 1 is char-
acterized by light flow, with very low to moderate variations
in speeds and flow. The second regime, “mixed free flow,”
exhibits the highest mean speed and very high variations in
right-lane speed and high variation in left- and interior-lane
30 s volumes. This regime, which has been purported to cap-
ture the behavior of traffic with heterogeneous freeway trip
lengths, is more often observed in the 10:00 a.m. to 1:00 p.m.
period on weekdays and immediately before 10:00 a.m. on
Saturdays (Golob et al., 2002). Regime 3, “heavy, vari-
able free flow,” is similar to Regime 4, “flow approaching
capacity” in terms of mean speed and only slightly below
Regime 4 in terms of mean flow. Regimes 3 and 4 are also
similar in terms of low variations in speeds, but they differ
substantially in terms of variation in right-lane flow. As
shown in the next section, despite their similarities on all
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Fig. 2. (Continued).

but a single flow dimension, this difference in flow vari-
ance leads to differences in the safety profile of these
two regimes. Regimes 2–4 exhibit similar high levels of
variations in flow in all lanes except the right lane. This
common trait might indicate a relatively high degree of
lane-changing behavior in moderately heavy to heavy
free-flow traffic.

As nominal capacity is exceeded, the speed–flow curve
moves from maximum “stable” flow at relatively high speeds
(Regime 4) to a similar level maximum “unstable” flow
(Regime 5), with a substantial reduction in mean speed.
These two regimes are connected by what traffic engineers
designate as the “queue discharge” (nearly vertical) portion
of the speed–flow diagram. In moving from Regime 4 to
Regime 5,Fig. 4 shows that the radar diagram becomes
squashed from the top (indicating reduced speed), but the
variation in flow also decreases dramatically, especially in
all lanes except the right lane. Regime 5 might be con-
sidered as predominantly “synchronized flow” (Kerner and
Rehborn, 1996a,b).

On the congested branch of the implied speed–flow dia-
gram, both flow and speed variances increase with decreas-
ing mean flows and decreasing mean speeds, as one moves

toward ever more congested flow (Regimes 6–8). Regimes
6 and 7 both represent stop-and-go traffic characterized by
shock wave dynamics and bunching. Regime 6 is character-
ized mostly by very high variances in speeds, in both lane
groupings. Regime 7 is characterized more by high vari-
ances in volumes. Further study is required to determine how
our results are related to theories about waves of rising and
falling vehicle density, particularly to the six phases pro-
posed by Helbing and his coworkers (Helbing et al., 1999;
Helbing and Huberman, 1998; Helbing and Schreckenberg,
1999). These phases are distinguished by how often waves
pass through the stream of vehicles and how much the den-
sity drops off between waves. In a phase called a “pinned
localized cluster,” for instance, an enduring but very lo-
calized bunching haunts the immediate vicinity of an on
ramp.Daganzo et al. (1999)provide possible explanations
of Helbing’s phases that could prove useful in identifying
the best theoretical explanation. Aside from theoretical ex-
planation, these differences in variances in speeds and flow,
by lanes, explain differences in safety profiles for different
types of congested flow that cannot be explained simply in
terms of mean speeds and flows. These accident profiles are
described in the next sections.
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Fig. 3. Speed–flow curve implied by locations of the eight traffic flow regimes in standardized speed–flow space.

Fig. 4. Six-dimensional radar plots for the eight traffic flow regimes plotted in standardized speed–flow space.
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Fig. 5. Distribution of daylight, dry road regimes on six Orange County freeways for 1998 morning weekday peak hours.

5.4. FITS application to 1998 weekday morning peak
period data

For purposes of testing FITS, we drew a random sample
of traffic flow measurements to estimate vehicle exposure

Fig. 6. Estimated total crashes per million vehicle miles of travel for the eight traffic flow regimes during a.m. peak hours, plotted in standardized
speed–flow space.

to each of the dry-road traffic flow regimes for the six major
Orange County freeways for the a.m. peak hours (6:00 a.m.
to 9:00 a.m. inclusive) for all of calendar year 1998 (Golob
et al., in press). Because of systematic biases introduced
by non-reporting loop stations in 1998, the following is
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intended for demonstration purposes only; no claim is made
that the results are representative of actual conditions. How-
ever, these estimates should be in the right ballpark, and they
demonstrate what might be learned from a full-scale imple-
mentation of such a safety performance analysis tool. The
estimated temporal distribution of the eight regimes during
the a.m. peak period in 1998 is graphed inFig. 5.

Regimes 1–4 are on the free-flow branch of the speed–flow
curve (Figs. 3 and 4), and approximately eighty percent of
the time the Orange County freeway system operated in one
of these four free-flow regimes during a.m. peak hours. The
remaining 20% of the time the system operated in one of
the four regimes on the congested-flow branch of the curve.
Among the four free-flow regimes, Regime 1 is not as likely
as the others, but (for the time period under consideration) it
is representative of conditions downstream of a bottleneck.

The four regimes on the congested flow branch of the
speed–flow curves, Regimes 5–8, together account for app-
roximately 20% of all time periods. As in the case of the four

Fig. 7. Prevailing crash types for each regime as a percentage of crashes of all types for that regime during a.m. peak hours, plotted in standardized
speed–flow space.

regimes on the free-flow branch of the speed–flow curve,
the likelihood of observing any one of the congested-flow
regimes is an increasing function of mean volume.

FITS was then used to estimate the distribution of 1998
a.m. peak period crashes across the eight regimes. Total
volumes associated with each observed regime occurrence
were calculated from total volumes across all freeway lanes.
These estimates are for demonstration purposes only; addi-
tional research is needed before we can confidently assign
safety levels to different traffic flow conditions. An estimate
of total crashes per million exposed vehicles per regime is
graphed in speed–flow space inFig. 6.

Crash rates estimated in this manner are highest along
the congested-flow branch of the curve. These preliminary
results demonstrate that crash rates for the same levels of
flow are approximately double in congested versus free
flow conditions: 1.49 crashes per million vehicle miles for
Regime 2 “mixed free flow” versus 3.21 for Regime 7 “vari-
able volume congested flow;” and 0.55 for Regime 4 “flow
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approaching capacity” versus 1.24 for Regime 5 “heavy flow
at moderate speeds.” If these “demonstration” results hold
up under a full-scale implementation, we will be able to
directly quantify the safety benefits of improved traffic flow.

5.5. Variation of crash type with traffic flow

Not all crashes are the same in terms of severity and ef-
fects on the system in terms of non-recurrent congestion.
Crashes involving fatalities and serious injuries represent
a much greater social and economic cost than do property
damage only (PDO) crashes, and the costs of PDO crashes
are a function of the extent of damage and the number of
vehicles involved. Injury crashes also produce a greater inci-
dent effect due to needs for emergency medical attention and
investigation requirements. Among PDO crashes, those in-
volving multiple vehicles and those located in interior lanes,
potentially interact with higher traffic flow volumes to cause
the greatest impact on system performance. In recognition
of the importance of crash typology, one of the objectives
in developing the FITS tool was to analyze the relationship
between type of crash and traffic flow. The test implemen-
tation of FITS for 1998 a.m. peak hour traffic revealed that
the eight regimes for daylight and dry road conditions were
characterized by different patterns of crash types. InFig. 7,

Fig. 8. Estimated total crashes per million vehicle miles of travel by traffic flow regimes plotted in standardized space of (x) variation in flow in right
lane vs. (y) variation in speeds in left and interior lanes.

the prevailing crash types for each regime, arranged by mean
speed and mean flow, are displayed as a percentage of all
crashes within that particular regime; the percentages are
displayed against a background (clear) circle representing
100%.

Two-vehicle weaving crashes make up 18.9% of all morn-
ing peak period crashes. The graph in the upper-left-hand
quadrant ofFig. 7 shows that these two-vehicle weaving
crashes are highly concentrated in Regimes 1 “light free
flow,” 4 “flow approaching capacity,” 6 “variable-speed con-
gested flow,” and 3 “heavy, variable free flow,” where they
make up between 23 and 47% of all crashes during the morn-
ing peak hours. Two-vehicle rear end crashes make up 40.9%
of crashes, but the graph in the upper-right-hand quadrant
of Fig. 7 shows that such crashes are more likely to occur
when traffic flow is operating under Regime 7 “variable vol-
ume congested flow;” Regime 5 “heavy flow at moderate
speeds,” Regime 8 “Heavily congested flow,” or Regime 2
“mixed free flow.” Finally, three-or-more-vehicle rear ends
make up 25.6% of all morning peak period crashes, but these
types of crashes are more prevalent when traffic is operat-
ing under Regimes 8 “heavily congested flow,” 3 “heavy,
variable free flow,” and 4 “flow approaching capacity.” To
further understand these patterns, it is useful to look at the
roles of variables that define flow turbulence.
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5.6. The influences of flow turbulence

The FITS tool captures flow turbulence by four variables:
(1) variation in speeds in the left and interior lanes, (2)
variation in speed in the right lane, (3) variation in flow
in the left and interior lanes, and (4) variation in flow in
the right lane. Results suggest that all of these variables are
effective in explaining some aspects of safety. For example,
the estimated number of morning peak period crashes per
million vehicle miles is plotted inFig. 8 as a function of
variation in flow in the right lane versus variation in speeds in
the left and interior lanes. The three rectangles superimposed
on Fig. 8 capture the patterns of prevailing crash types for
the regimes. These prevailing types were shown according
to mean speed and flow inFigs. 7 and 8represents a different
two-dimensional plane passed through the six-dimensional
space represented in the radar diagrams ofFig. 2.

With the notable exception of Regime 8 “heavily con-
gested flow,” which has a high crash rate and low variations,
the next two highest crash rates are for the two Regimes
(6 and 7) with the highest levels of turbulence as defined
by these two dimensions. This demonstrates how reducing
variations in speed and flow should lead to safer condi-
tions.Fig. 8 also reveals that lane-changing crashes involv-

Fig. 9. Estimated total crashes per million vehicle miles of travel by traffic flow regimes plotted in standardized space of (x) median speed vs. (y)
variation in speeds in left and interior lanes.

ing two vehicles tend to be distributed anywhere along the
y-axis defining variation in speed in the left and interior
lanes (that is, they are prevalent under both highly-variable
and stable speeds in the left and interior lanes), but these
types of crashes prevail only for a range of average varia-
tions in flow conditions in the rightmost lane. Conversely,
multi-vehicle rear-end crashes tend to be distributed all along
thex-axis defining variance in flow in the rightmost lane, but
multi-vehicle rear-end crashes are more likely only when
speed variations on the rest of the lanes are low. Finally,
rear-end crashes involving only two vehicles tend to follow
a pattern that is somewhere between these two extremes, oc-
curring primarily under conditions of either relatively high
or low variability in both of these two variables.

Viewed from a slightly different perspective—one of
passing a plane through the median speed and left- and
interior-lane speed variability facet of the radar diagrams
(Fig. 9)—we see that the large cluster of crashes in the
lower left quadrant ofFig. 8 (low variability in both flow in
the rightmost lane and speed in the left and interior lanes) is
more distinctly separated into a single cluster of crashes in-
volving two- and multi-vehicle rear end crashes, which are
associated with low, relatively stable speeds (and occurring
with the highest crash rate), and a collection of different



T.F. Golob et al. / Accident Analysis and Prevention 36 (2004) 933–946 945

types of crashes, all of which are associated with relatively
high, stable speeds. The relatively high crash rates associ-
ated with high turbulence inFig. 8, is restricted primarily
to conditions in which the speed is relatively low. Combin-
ing the trends shown in the twoFigs. 8 and 9, we note that
lane-change crashes tend to occur under conditions in which
there is the highest variability in speeds (presumably, condi-
tions in which switching lanes could prove advantageous to
the driver), while rear-end crashes tend to cluster where there
is both somewhat lower variation in speed and at somewhat
lower speeds (presumably, stop-and-go conditions, where
there is both volatility coupled with only marginal advan-
tage to switching lanes).

6. Conclusions

Our object is to demonstrate the potential of implement-
ing a tool for real-time assessment of the level of safety
of any pattern of traffic flow on an urban freeway. Such
a tool requires only a stream of 30 s (or similar interval)
observations from ubiquitous single inductive loop detec-
tors. This stream is processed to provide a continual as-
sessment of safety, updated every interval, based on cen-
tral tendencies of flow and speed, and variations in flow
and speed for different lanes of the freeway. We are not
purporting that the method described here is the only ba-
sis for such a tool. Future research is needed to compare
the present method with the other approaches that have
been recently developed (e.g.,Oh et al., 2001; Lee et al.,
2003), in order to implement a safety performance evalu-
ation tool that incorporates the best features of each ap-
proach.

Traffic safety monitoring complements existing perfor-
mance monitoring by adding real-time assessment of pre-
cursors of traffic safety to performance criteria that typically
involve travel times, speeds and throughput. A safety per-
formance monitoring tool can also be used as part of any
evaluation that compares before and after traffic flow data.
Such an evaluation might involve assessing the benefits of
ATMS operations or any other ITS implementation. Another
promising application is to forecast the safety implications
of proposed projects by evaluating the levels of safety im-
plied by traffic simulation model outputs.

Additional benefits of this course of research are the in-
sights gained in relating accident and traffic flow typologies.
Identifying the types of crashes that are most likely to occur
under different traffic conditions should aid in identifying
treatments aimed at enhancing safety. Identifying where and
when on the freeway system these conditions occur should
aid in efficiently directing these treatments. Treatments to
reduce specific types of accidents might include traffic engi-
neering improvements (signage, lighting, surface treatment,
lane re-striping or realignment, barrier adjustments, ramp
metering), implementation of intelligent transportation sys-
tems (variable message signs, highway advisory radio, in-

formation for in-vehicle navigation systems), and enhanced
driver education.
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